Effect of selenium-supplement on the calcium signaling in human endothelial cells.

J Cell Physiol

Institute of Biophysics, Chinese Academy of Science, Beijing, China.

Published: October 2005

Intracellular Ca2+ signaling controls many cellular functions. Understanding its regulation by selenoproteins is essential for understanding the role of selenoproteins in regulating cell functions. The activity of thioredoxin reductase (TrxR), thioredoxin (Trx) content, and the activity of glutathione peroxidase (GPx) in the human endothelial cells cultured in selenium-supplemented medium (refer as Se+ cells) was found 70%, 40%, and 20% higher, respectively than those in the cells cultured in normal medium (refer as Se0 cells). The intracellular Ca2+ signaling initiated by inositol 1,4,5-trisphosphate (IP3), histamine, thapsigargin (TG), carbonyl cyanide p-(tri-fluoromethoxy) phenyl-hydrazone (FCCP), and cyclosporin A (CsA) was investigated in both Se+ and Se0 cells. It was interestingly found that the higher activity of selenoproteins reduced the sensitivity of IP3 receptor to the IP3-triggered Ca2+ release from intracellular stores, but enhanced activation of the receptor-coupled phospholipase C in histamine-stimulated Se+ cells by showing much more generation of IP3 and higher elevation of cytosolic Ca2+. The higher selenoprotein activity also reduced susceptibility of the uniporter to the mitochondrial uncoupler, susceptibility of the permeability transition pore (PTP) to its inhibitor, and the vulnerability of endoplasmic reticulum (ER) Ca2+-ATPase to its inhibitor in selenium-supplementing cells. The results suggest that cell calcium signaling is subjected to thiol-redox regulation by selenoproteins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.20378DOI Listing

Publication Analysis

Top Keywords

calcium signaling
8
human endothelial
8
cells
8
endothelial cells
8
cells intracellular
8
intracellular ca2+
8
ca2+ signaling
8
regulation selenoproteins
8
cells cultured
8
medium refer
8

Similar Publications

The zona glomerulosa (ZG) synthesizes the mineralocorticoid aldosterone. The primary role of aldosterone is the maintenance of volume and electrolyte homeostasis. Aldosterone synthesis is primarily regulated via tightly controlled oscillations in intracellular calcium levels in response to stimulation.

View Article and Find Full Text PDF

Living organisms exhibit an impressive ability to expand the basic information encoded in their genome, specifically regarding the structure and function of protein. Two basic strategies are employed to increase protein diversity and functionality: alternative mRNA splicing and post-translational protein modifications (PTMs). Enzymatic regulation is responsible for the majority of the chemical reactions occurring within living cells.

View Article and Find Full Text PDF

Tau hyper-phosphorylation has been recognized as an essential contributor to neurodegeneration in Alzheimer's disease (AD) and related tauopathies. In the last decade, tau hyper-phosphorylation has gained considerable concern in AD therapeutic development. Tauopathies are manifested with a broad spectrum of symptoms, from dementia to cognitive decline and motor impairments.

View Article and Find Full Text PDF

Monitoring of inflammatory preterm responses via myometrial cell based multimodal electrophysiological and optical biosensing platform.

Biosens Bioelectron

January 2025

Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China. Electronic address:

Preterm birth (PTB) remains a leading cause of neonatal morbidity and mortality, with inflammation-induced PTB posing a significant challenge due to its complex pathophysiology. To address this, we developed an in vitro platform utilizing hTERT-immortalized human myometrial (hTERT-HM) cells integrated with a multielectrode array (MEA) biosensing system and optical calcium imaging. Compared to primary uterine myometrial cells, hTERT-HM cells exhibit superior reproducibility, high scalability, and convenient manipulation, facilitating the consistent and large-scale investigations.

View Article and Find Full Text PDF

Boosting Natural Killer Cells' Immunotherapy with Amoxicillin-Loaded Liposomes.

Mol Pharm

January 2025

State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!