To evaluate the predictive value of protein C as a marker of severity in patients with diffuse peritonitis and abdominal sepsis, protein C levels were repeatedly determined and compared with serum levels of antithrombin III, plasminogen, alpha(2)-antiplasmin, Plasminogen activator inhibitor, D-dimer, C1-inhibitor, high molecular weight kininogen, and the C5a, C5b-9 fragments of the complement system. We carried out a prospective study from 44 patients with severe peritonitis confirmed by laparotomy and 15 patients undergoing elective ventral hernia repair who acted as controls. Analyzed biochemical parameters were determined before operations and on days 1, 2, 3, 5, 7, 10, and 14 after operations. For the study group, preoperative average protein C level was significantly lower in the patients who developed septic shock in the late course of the disease, with lethal outcome, than in the patients with severe peritonitis and sepsis who survived (p = 0.0001). In non-survivors, protein C activity remained decreased below 70%, whereas the course of survivors was characterized by increased values that were significantly higher (p < 0.03) at every time point than in those patients who died. Protein C was of excellent predictive value and achieved a sensitivity of 80% and a specificity of 87.5% in discriminating survivors from non-survivors within the first 48 hours of the study (AUC-0.917; p < 0.001), with a "cut-off" level of 66.0%. As for the control group, throughout the study period, protein C activity was permanently maintained within the range of normal, with significant differences with reference to the study group (p < 0.01). These results suggest that protein C represents a sensitive and early marker for the prediction of severe septic complications during diffuse peritonitis, and of outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00268-005-7771-7 | DOI Listing |
Annu Rev Biomed Eng
January 2025
1Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA; email:
Biochemical signals in native tissue microenvironments instruct cell behavior during many biological processes ranging from developmental morphogenesis and tissue regeneration to tumor metastasis and disease progression. The detection and characterization of these signals using spatial and highly resolved quantitative methods have revealed their existence as matricellular proteins in the matrisome, some of which are bound to the extracellular matrix while others are freely diffusing. Including these biochemical signals in engineered biomaterials can impart enhanced functionality and native-like complexity, ultimately benefiting efforts to understand, model, and treat various diseases.
View Article and Find Full Text PDFAm J Trop Med Hyg
January 2025
Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, México.
The socioecological conditions of Mexican regions are conducive to the spread of vector-borne diseases. Although there are established treatment guidelines for dengue and rickettsiosis, diagnosis is complicated. The objective of this work was to identify epitopes of Rickettsia and dengue virus that could be used in serology screening against vector-borne diseases.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.
Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Geneis (Beijing) Co. Ltd., Beijing 100102, China.
Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!