Vascular smooth muscle cell (VSMC) chemotaxis is fundamental to atherosclerosis and intimal hyperplasia. An increase in intracellular Ca2+ [Ca2+]i is an important signal in chemotaxis, but the role of L-type calcium channels (CaV1.2) in this response in human vascular smooth muscle cells (hVSMC) has not been examined. hVSMC were grown from explant cultures of saphenous vein. Confluent hVSMC at passage 3 were studied after culture in medium containing 15% foetal calf serum (FCS) (randomly cycling) or following serum deprivation for up to 7 days. Smooth muscle alpha-actin was measured by immunoblotting and immunofluorescence microscopy. [Ca2+]i was measured using fura 2 fluorimetry. Chemotaxis was measured using a modified Boyden chamber technique and cell attachment to gelatin-coated plates was also quantified. The number and affinity of dihydropyridine-binding sites was assessed using [5-methyl-3H]PN 200-110 binding. In randomly cycling cells, the calcium channel agonist, Bay K 8644a and 100 mM KCl did not affect [Ca2+]i. In addition, the rise in [Ca2+]i induced by platelet-derived growth factor-BB (PDGF) was unaffected by the CaV1.2 antagonists, amlodipine and verapamil. In randomly cycling cells amlodipine did not affect PDGF-induced migration. In serum-deprived cells, smooth muscle alpha-actin was increased and Bay K 8644a and 100 mM KCl increased [Ca2+]i. PDGF-induced rises in [Ca2+]i were also inhibited by amlodipine and verapamil. The ability of Bay K 8644a to increase [Ca2+]i and verapamil to inhibit PDGF-induced rises in [Ca2+]i was evident within 3 days after serum withdrawal. In serum-deprived hVSMC Bay K 8644a induced chemotaxis and amlodipine inhibited PDGF-induced migration. Cell attachment in the presence of PDGF was unaffected by amlodipine in either randomly cycling or serum-deprived hVSMC. Serum withdrawal was associated with a decrease in the maximum number of dihydropyridine-binding sites (B(max)) and a decrease in affinity (K(D)). Serum deprivation of hVSMC results in increased expression of smooth muscle alpha-actin, a marker of more differentiated status, and increased [Ca2+]i responses and chemotaxis mediated by CaV1.2. These observations may have important implications for understanding the therapeutic benefits of calcium channel antagonists in cardiovascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1576191 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0706237 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
() is a causative gene for genetic hydrocephalus found in hemorrhagic hydrocephalus () mice. The knockout (KO) rat has subcortical heterotopia with frequent brain hemorrhage as seen in mice. In this study, we report aberrant alpha-smooth muscle actin (α-SMA) expression in the wall of lateral ventricle of the KO rats.
View Article and Find Full Text PDFCell Biosci
January 2025
Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
Department of Research and Development, Nonprofit Organization of Research Institute of Life Benefit, Sapporo, Hokkaido, 005-0006, Japan.
Purpose: Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment.
View Article and Find Full Text PDFJ Clin Pathol
January 2025
Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
Aims: Progesterone receptor (PR) is a crucial prognostic marker in breast cancer. However, achieving consistent results in PR immunohistochemistry (IHC) remains challenging due to the lack of well-defined low-positive controls. This study aimed to identify benign tissues with consistent low-level PR expression to serve as ideal controls for IHC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!