Myocardial calcium accumulation and myocardial injury occur after burn trauma. However, whether altered calcium dyshomeostasis occurs as a result of myocardial injury/dysfunction or whether altered calcium handling initiates myocardial injury and contractile abnormalities remains unclear. In addition, the specific mechanisms by which burn injury promotes calcium entry into cardiac myocytes, specifically L-type channels and the sodium-calcium exchanger, remain unclear. This study addressed the hypothesis that burn trauma promotes cardiomyocyte calcium accumulation, in part, via reverse mode function of the sodium/calcium exchanger and via L-type channels. Myocardial calcium accumulation, in turn, alters performance. Burn trauma (40% TBSA and sham burn for controls) was accomplished in Sprague-Dawley rats. Burns received fluid resuscitation (lactated Ringer's at 4 ml/kg/% burn). Hearts were harvested at several time points after burn injury (2, 4, 8, 12, 24, 48, 72 hours, and 8 days after burn) and were perfused with collagenase/bovine serum albumin-containing buffer to produce enzymatic digestion. Myocytes were then resuspended in MEM buffer, loaded with 2 mug/ml Fura 2AM for 45 minutes or 2 microg of sodium-binding benzofurzan isophthalate for 2 hours at room temperature in the dark. Cells were washed to remove extracellular dye and placed on a glass slide on the stage of a Nikon inverted microscope interfaced with Grooney optics. A computer-controlled filter changer allowed alternation between 340/380 excitation wavelengths; fluorescence was measured at 510 nm. Cardiac function (Langendorff) was measured in parallel groups at each time period (n = 6-7 hearts/time point). Cardiomyocyte accumulation of sodium occurred before alterations in myocyte calcium levels, and sodium/calcium dyshomeostasis preceded cardiac contraction deficits. Interventions that altered calcium flux through L-type channels (amlodipine) or sodium/calcium exchange (amiloride) attenuated burn-related myocyte calcium accumulation and improved contractile function. Our finding that myocyte sodium loading precedes myocyte calcium accumulation suggests a role for the reverse mode function of the sodium/calcium exchanger in burn trauma.
Download full-text PDF |
Source |
---|
J Exp Bot
January 2025
National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
Plants deploy cellular Ca2+ elevation as a signal for environmental stress signaling. Extracellular ATP (eATP) is released into the extracellular matrix when cells are wounded. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), a key legume-type lectin receptor, senses and binds eATP and activates Ca2+ signaling.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Plants (Basel)
January 2025
Wheat Breeding State Key Laboratory, Shandong Agricultural University, Taian 271000, China.
Optimizing nitrogen (N) sources has the potential to improve wheat tillering, nitrogen use efficiency (NUE), and grain yield, yet the underlying mechanisms remain unclear. This study hypothesizes that combining specific N sources can increase zeatin riboside + zeatin (ZR + ZT) content in tiller nodes and maintain a higher ZR + ZT/gibberellin A7 (GA) ratio, thereby promoting tiller development, enhancing NUE, and increasing yield. The effects of N source treatments on two wheat cultivars, the multi-spike Shannong 28 (SN28) and the large-spike Tainong 18 (TN18), were investigated.
View Article and Find Full Text PDFNutrients
January 2025
Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.
Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.
View Article and Find Full Text PDFLife (Basel)
December 2024
Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!