The human cysteine-rich protein 61 (CYR61/CCN1) belongs to the CCN family of genes which plays an important role in cellular processes such as proliferation, migration, adhesion, and differentiation. These extracellular matrix signaling molecules consist of a modular structure and contain 38 conserved cysteine residues. Previously, we have shown that CYR61 is expressed in human osteoblasts and is regulated by bone-relevant growth factors. The protein also plays a role in angiogenesis. The open reading frame was cloned into a baculovirus expression vector and transfected into SF-21 insect cells. Recombinant protein was expressed as a fusion protein with the Fc-domain of human IgG and purified using affinity chromatography on protein G-Sepharose columns. The chorioallantoic membrane assay verified that blood vessel formation was stimulated by rCYR61. Additionally, human primary mesenchymal stem cells, osteoblasts, and endothelial cells responded to CYR61 treatment by a markedly stimulated proliferation. rCYR61-Fc represents a tool to elucidate its role in cells of the bone microenvironment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2005.03.031 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Patras, Patras 26504, Greece.
Energy-efficient separation of light alkanes from alkenes is considered as one of the most important separations of the chemical industry today due to the high energy penalty associated with the applied conventional cryogenic technologies. This study introduces fluorine-doped activated carbon adsorbents, where elemental fluorine incorporation into the carbon matrix plays a unique role in achieving high ethane selectivity. This enhanced selectivity arises from specific interactions between surface-doped fluorine atoms and ethane molecules, coupled with porosity modulation.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
January 2025
Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan.
Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.
View Article and Find Full Text PDFGynecol Endocrinol
December 2025
Department of Reproductive Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
Oocyte maturation arrest (OMA) may occur at different stages, including the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). A total maturation arrest of human oocytes is rarely observed during fertilization (IVF). We have identified a case of infertile female for whom all oocytes fail to mature and are arrested at MI.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
"VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia.
Technetium-99m plays a pivotal role in nuclear medicine, offering unique IMAGING capabilities due to its favorable physical and chemical properties. This study investigates the redox behavior and electronic structures of three representative Tc(V) oxo complexes, [TcO(HMPAO)], [TcO(Bicisate)], and [TcO(DMSA)], using computational techniques. Employing relativistic density functional theory with the Zero-Order Regular Approximation (ZORA), we analyze singlet-triplet energy gaps, Gibbs free energy changes, and redox potentials in neutral and acidic environments.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!