Trypsins constitute a subclass of the S1A family of serine peptidases found in all groups of animal and some bacteria. At present, no information about the genomic organisation of trypsins is available for copepods. The only data of copepod trypsins indicate several different trypsins in the marine parasitic copepod Lepeophtheirus salmonis. In the present study, 31.7 kbp of genomic DNA surrounding the previously described LsTryp1-5 sequences was sequenced. The sequenced regions contain nine full-length and three partial trypsin genes. A conservative estimate based on PCR analysis and genomic sequence indicated at least 22 different trypsin genes in L. salmonis, of which 18 are most similar to the previously described LsTryp1 and -2 cDNA sequences. Four of these genes are putative pseudogenes. In addition, a putative mariner like transposase gene was identified. The genomic sequences suggest that the L. salmonis trypsin genes reside within one or more gene clusters. Three different LsTryp intron exon structures were identified, and all three are different from the intron exon organisation previously reported for other S1A peptidases. This implies several intron loss and gain events in the evolution of the L. salmonis trypsin genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2005.03.011DOI Listing

Publication Analysis

Top Keywords

trypsin genes
20
lepeophtheirus salmonis
8
salmonis trypsin
8
intron exon
8
genes
6
salmonis
5
organisation trypsin
4
genes salmon
4
salmon louse
4
louse lepeophtheirus
4

Similar Publications

Identification of Kunitz-Type Inhibitor Gene Family of Reveals a Stress Tolerance Function in Inverted Cuttings.

Int J Mol Sci

December 2024

Key Laboratory for Forest Genetics and Tree Improvement and Propagation in University of Yunnan Province, Southwest Forestry University, Kunming 650224, China.

Plant protease inhibitors are a ubiquitous feature of plant species and exert a substantial influence on plant stress responses. However, the (Kunitz trypsin inhibitor) family responding to abiotic stress has not been fully characterized in . In this study, we conducted a genome-wide study of the family and analyzed their gene structure, gene duplication, conserved motifs, cis-acting elements, and response to stress treatment.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) significantly damage biological systems related to reproductive, neurological, and metabolic functions. Approximately 1000 chemicals are known to possess endocrine-acting properties, including bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP). This study primarily focuses on the potential effects of EDCs on the transcriptional levels of innate immune prophenoloxidase (proPO) system-related genes under oxidative stress in the gonads and stomach of the mud crab , an indicator species for assessing coastal benthic environments, when exposed to 1 µg L, 10 µg L, and 30 µg L BPA or DEHP.

View Article and Find Full Text PDF

Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.

View Article and Find Full Text PDF

A Nucleotide-Binding Domain Leucine-Rich Repeat Gene Regulates Plant Growth and Defense Against Chewing Herbivores.

Plants (Basel)

November 2024

State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.

Plant nucleotide-binding leucine-rich repeat immune receptor genes (NLRs) play an important role in plant defenses against pathogens, pathogenic nematodes, and piercing-sucking herbivores. However, little is known about their functions in plant defenses against chewing herbivores. Here, we identified a plasma membrane-localized coiled-coil-type NLR protein, OsPik-2-like, whose transcript levels were induced by the infestation of rice leaf folder (LF, ) larvae, and by treatment with mechanical wounding.

View Article and Find Full Text PDF

Effects of nanopolystyrene and/or phoxim exposure on digestive function of Eriocheir sinensis.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Engineering Technology Research Center of Healthy Aquaculture, Anhui Agricultural University, Hefei 230036, China. Electronic address:

Nanopolystyrene (NP) and phoxim (PHO) are pervasive environmental contaminants that pose a significant threat to the health of aquatic organisms, prompting widespread concern among researchers and the public alike. The hepatopancreas play important roles in the Chinese mitten crab (Eriocheir sinensis), such as digestion, absorption and detoxification. This study assessed the hepatopancreatic toxicity caused by the exposure of Eriocheir sinensis to environmentally relevant concentrations of NP and/or PHO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!