The rationale for supplementing an infant formula with prebiotics is to obtain a bifidogenic effect and the implied advantages of a 'breast-fed-like' flora. So far, the bifidogenic effect of oligofructose and inulin has been demonstrated in animals and in adults, of oligofructose in infants and toddlers and of a long-chain inulin (10 %) and galactooligosaccharide (90 %) mixture in term and preterm infants. The addition of prebiotics to infant formula softens stools but other putative effects remain to be demonstrated. Studies published post marketing show that infants fed a long-chain inulin/galactooligosaccharide mixture (0.8 g/dl) in formula grow normally and have no side-effects. The addition of the same mixture at a concentration of 0.8 g/dl to infant formula was therefore recognized as safe by the European Commission in 2001 but follow-up studies were recommended. It is thought that a bifidogenic effect is beneficial for the infant host. The rising incidence in allergy during the first year of life may justify the attempts to modulate the infant's flora. Comfort issues should not be confused with morbidity and are likely to be multifactorial. The functional effects of prebiotics on infant health need further study in controlled intervention trials.

Download full-text PDF

Source
http://dx.doi.org/10.1079/bjn20041354DOI Listing

Publication Analysis

Top Keywords

prebiotics infant
12
infant formula
12
infant
6
application prebiotics
4
infant foods
4
foods rationale
4
rationale supplementing
4
supplementing infant
4
formula
4
formula prebiotics
4

Similar Publications

Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.

View Article and Find Full Text PDF

Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota.

View Article and Find Full Text PDF

Role of Human Milk Microbiota in Infant Neurodevelopment: Mechanisms and Clinical Implications.

Children (Basel)

November 2024

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy.

Background: Human milk (HM) is recognized as an ideal source of nutrition for newborns; as a result, its multiple bioactive molecules can support the growth of healthy newborns and reduce the risk of mortality and diseases such as asthma, respiratory infections, diabetes (type 1 and 2), and gastrointestinal disorders such as ulcerative colitis and Crohn's disease. Furthermore, it can reduce the severity of necrotizing enterocolitis (NEC) in preterm infants. Moreover, human milk oligosaccharides (HMOs) present in breast milk show an immunomodulatory, prebiotic, and neurodevelopmental effect that supports the microbiota-gut-brain axis.

View Article and Find Full Text PDF

Infants rely on their developing immune system and the protective components of breast milk to defend against bacterial and viral pathogens, as well as immune disorders such as food allergies, prior to the introduction of solid foods. When breastfeeding is not feasible, fortified infant formula will most frequently be offered, usually based on a cow's milk-based substitute. The current study aimed to explore the immunomodulatory effects of combinations of commercially available human milk oligosaccharides (HMOs).

View Article and Find Full Text PDF

Background: The interaction between the human breast milk microbiota and human milk oligosaccharides (HMOs) plays a crucial role in the healthy growth and development of infants. We aimed to clarify the link between the breast milk microbiota and HMOs at two stages of lactation.

Methods: The microbiota and HMOs of 20 colostrum samples (C group, 1-5 days postpartum) and 20 mature milk samples (S group, 42 days postpartum) collected from postpartum mothers were analyzed using 16S rRNA gene high-throughput sequencing and high-performance liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!