Brain tumors are a diverse group of malignancies that remain refractory to conventional treatment approaches. Molecular neuro-oncology has now begun to clarify the transformed phenotype of brain tumors and identify oncogenic pathways that might be amenable to targeted therapy. Abnormalities of the apoptotic and cell cycle signaling pathways are key molecular features of many brain tumors and are currently under evaluation for potential therapeutic intervention. The apoptosis pathway has numerous targets for molecular therapeutic development, including p53, Bax, Bcl-2, cFLIP, effector caspases, growth factor receptors, phosphatidylinositol-3-kinase, Akt and apoptosis inhibitors. Current molecular treatment approaches include antisense techniques, gene therapy and small-molecule modulators and inhibitors. Potential targets of the cell cycle pathway include the cyclins, cyclin-dependent kinases, p53, retinoblastoma, E2F and the cyclin-dependent kinase inhibitors. Developmental molecular therapeutics for this pathway include adenoviral and gene therapy, small-peptide cyclin-dependent kinase modulators, proteasomal inhibitors and small-molecule cyclin-dependent kinase inhibitors. Several of these recently identified agents have begun evaluation in clinical trials. Further development of targeted therapies designed to modulate apoptosis and the cell cycle, and evaluation of these new agents in clinical trials, will be needed to improve survival and quality of life for patients with brain tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1586/14737140.5.2.355 | DOI Listing |
Pituitary
January 2025
Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, 2nd Floor, Miami, Fl, 33136, USA.
Purpose: Prolonged length of stay (PLOS) can lead to resource misallocation and higher complication risks. However, there is no consensus on defining PLOS for endoscopic transsphenoidal pituitary surgery (ETPS). Therefore, we investigated the impact of varying PLOS definitions on factors associated with PLOS in patients undergoing ETPS.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFPituitary
January 2025
Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
Purpose: Pituitary adenomas, despite their histologically benign nature, can severely impact patients' quality of life due to hormone hypersecretion. Invasion of the medial wall of the cavernous sinus (MWCS) by these tumors complicates surgical outcomes, lowering biochemical remission rates and increasing recurrence. This study aims to share our institutional experience with the selective resection of the MWCS in endoscopic pituitary surgery.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the First People's Hospital of Changzhou, Jiangsu Province, Changzhou 213000, China.
Methods Cell Biol
January 2025
Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:
Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!