Horse spleen ferritin (HoSF) containing 800-1500 cobalt or 250-1200 manganese atoms as Co(O)OH and Mn(O)OH mineral cores within the HoSF interior (Co-HoSF and Mn-HoSF) was synthesized, and the chemical reactivity, kinetics of reduction, and the reduction potentials were measured. Microcoulometric and chemical reduction of HoSF containing the M(O)OH mineral core (M = Co or Mn) was rapid and quantitative with a reduction stoichiometry of 1.05 +/- 0.10 e/M forming a stable M(OH)(2) mineral core. At pH 9.0, ascorbic acid (AH(2)), a two-electron reductant, effectively reduced the mineral cores; however, the reaction was incomplete and rapidly reached equilibrium. The addition of excess AH(2) shifted the reaction to completion with a M(3+)/AH(2) stoichiometry of 1.9-2.1, consistent with a single electron per metal atom reduction. The rate of reaction between M(O)OH and excess AH(2) was measured by monitoring the decrease in mineral core absorbance with time. The reaction was first order in each reactant with second-order rate constants of 0.53 and 4.74 M(-1) min(-1), respectively, for Co- and Mn-HoSF at pH 9.0. From the variation of absorbance with increasing AH(2) concentration, equilibrium constants at pH 9.0 of 5.0 +/- 1.9 for Co-HoSF and 2.9 +/- 0.9 for Mn-HoSF were calculated for 2M(O)OH + AH(2) = 2M(OH)(2) + D, where AH(2) and D are ascorbic acid and dehydroascorbic acid, respectively. Consistent with these equilibrium constants, the standard potential for the reduction of Co(III)-HoSF is 42 mV more positive than that of the ascorbic acid reaction, while the standard potential of Mn(III)-HoSF is 27 mV positive relative to AH(2). Fe(2+) in solution with Co- and Mn-HoSF under anaerobic conditions was oxidized to form Fe(O)OH within the HoSF interior, resulting in partial displacement of the Co or Mn by iron.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic049085lDOI Listing

Publication Analysis

Top Keywords

mineral core
12
ascorbic acid
12
horse spleen
8
spleen ferritin
8
mineral cores
8
hosf interior
8
excess ah2
8
co- mn-hosf
8
equilibrium constants
8
standard potential
8

Similar Publications

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Due to the high viscosity and low fluidity of viscous crude oil, how to effectively recover spilled crude oil is still a major global challenge. Although solar thermal absorbers have made significant progress in accelerating oil recovery, its practical application is largely restricted by the variability of solar radiation intensity, which is influenced by external environmental factors. To address this issue, this study created a new composite fiber that not only possesses solar energy conversion and storage capabilities but also facilitates crude oil removal.

View Article and Find Full Text PDF

Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.

View Article and Find Full Text PDF

The ruins of the Imperial City of the Minyue Kingdom were an important site of the Minyue Kingdom during the Han Dynasty. Characteristic bronze arrowheads unearthed from the East Gate, with their exquisite craftsmanship, provide important physical evidence for studying ancient bronze casting technology and the military activities of that time. However, there is still a lack of systematic research on the alloy composition, casting process, and chemical stability of these arrowheads in long-term burial environments.

View Article and Find Full Text PDF

The aim of this work was to explore the biomarkers associated with epithelial to mesenchymal transition (EMT) and mineralization processes as new prognostic factors across different breast cancer phenotypes. To this end, 133 breast biopsies, including benign and malignant lesions, with or without microcalcifications, were retrospectively collected. Immunohistochemical analysis was performed to evaluate the expression of vimentin, BMP-2, BMP-4, RANKL, Runx2, OPN, PTX3, and SDF-1, while Kaplan-Meier plots were used to assess their prognostic impact on overall survival in a dataset of 2976 breast cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!