High-valent imido complexes of manganese and chromium corroles.

Inorg Chem

Department of Chemistry and Biochemistry, University of California, Los Angeles, 90095, USA.

Published: May 2005

The oxidation reaction of M(tpfc) [M = Mn or Cr and tpfc = tris(pentafluorophenyl)corrole] with aryl azides under photolytic or thermal conditions gives the first examples of mononuclear imido complexes of manganese(V) and chromium(V). These complexes have been characterized by NMR, mass spectrometry, UV-vis, EPR, elemental analysis, and cyclic voltammetry. Two X-ray structures have been obtained for Mn(tpfc)(NMes) and Cr(tpfc)(NMes) [Mes = 2,4,6-(CH(3))(3)C(6)H(2)]. Short metal-imido bonds (1.610 and 1.635 Angstroms) as well as nearly linear M-N-C angles are consistent with triple M triple-bond NR bond formation. The kinetics of nitrene [NR] group transfer from manganese(V) corroles to various organic phosphines have been defined. Reduction of the manganese(V) corrolato complex affords phosphine imine and Mn(III) with reaction rates that are sensitive to steric and electronic elements of the phosphine substrate. An analogous manganese complex with a variant corrole ligand containing bromine atoms in the beta-pyrrole positions, Mn(Br(8)tpfc)(NAr), has been prepared and studied. Its reaction with PEt(3) is 250x faster than that of the parent tpfc complex, and its Mn(V/IV) couple is shifted by 370 mV to a more positive potential. The EPR spectra of chromium(V) imido corroles reveal a rich signal at ambient temperature consistent with Cr(V) triple-bond NR (d(1), S = 1/2) containing a localized spin density in the d(xy) orbital, and an anisotropic signal at liquid nitrogen temperature. Our results demonstrate the synthetic utility of organic aryl azides in the preparation of mononuclear metal imido complexes previously considered elusive, and suggest strong sigma-donation as the underlying factor in stabilizing high-valent metals by corrole ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic0484506DOI Listing

Publication Analysis

Top Keywords

imido complexes
12
aryl azides
8
high-valent imido
4
complexes
4
complexes manganese
4
manganese chromium
4
chromium corroles
4
corroles oxidation
4
oxidation reaction
4
reaction mtpfc
4

Similar Publications

We report the proton-coupled electron transfer (PCET) reactivity of an octahedral Ta(V) aniline complex supported by an acridane-derived redox active NNN pincer ligand. The reversible binding of aniline to a Ta(V) dichloride induces significant coordination-induced bond weakening (CIBW) of the aniline N-H bonds. This enables a rare two-fold hydrogen atom abstraction, resulting in a terminal imido complex and a two-electron oxidation of the NNN pincer ligand, all while maintaining the metal's oxidation state.

View Article and Find Full Text PDF

Multielectron Redox Chemistry of Ytterbium Complexes Reaching the +1 and Zero Formal Oxidation States.

J Am Chem Soc

January 2025

Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Lanthanide redox reactivity remains limited to one-electron transfer reactions due to their inability to access a broad range of oxidation states. Here, we show that multielectron reductive chemistry is achieved for ytterbium by using the tripodal tris(siloxide)arene redox-active ligand, which can store two electrons in the arene anchor. Reduction of the Yb(III) complex of the tris(siloxide)arene tripodal ligand affords the Yb(II) analogue by metal-centered reduction.

View Article and Find Full Text PDF

Two-Electron Oxidative Atom and Group Transfer Reactions at a Well-Defined Uranium(II) Center.

Angew Chem Int Ed Engl

November 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.

The multi-electron redox chemistry of uranium(II) compounds remains largely unexplored. Herein, we report a series of two-electron oxidative atom and group transfer reactions at a well-defined uranium(II) center. The reactions of uranium(II) complexes [M][(TPBN)U] (M=K(2,2,2-cryptand) and K(18-crown-6)(THF)) with pyridine-N-oxide or nitrosobenzene, elemental sulfur/selenium or triphenylphosphine sulfide/selenide, and ditellurium salt led to the isolation of uranium(IV) terminal oxo and chalcogenido complexes [M][(TPBN)UX] (X=O, S, Se, Te).

View Article and Find Full Text PDF

Realization of an Elusive U(III) Imido Complex.

Chemistry

November 2024

Pacific Northwest National Laboratory, Richland, Washington, 99345, United States of America.

Article Synopsis
  • The reaction of Cp*(TerN)UI with KC produces the first known stable trivalent uranium imido complex, known as KCp*(TerN)UI.
  • This compound is significant because trivalent uranium imidos have been difficult to isolate and are usually unstable.
  • Both experimental and computational studies suggest that the coordination with potassium (K) is key to stabilizing this U(III) monoimido complex.
View Article and Find Full Text PDF

Structural analysis of dUTPase from Helicobacter pylori reveals unusual activity for dATP.

Int J Biol Macromol

December 2024

Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India. Electronic address:

Helicobacter pylori deoxyuridine triphosphate nucleotidohydrolase (HpdUTPase) is a key enzyme in the synthesis of the thymidine nucleotide pathway. It catalyzes the hydrolysis of dUTP to dUMP and releases pyrophosphate. This enzyme has been shown to be essential in several pathogenic organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!