Micrometer and submicrometer diameter fibers of recombinant dragline spider silk analogues, synthesized via protein engineering strategies, have been electrospun from 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and compared with cast films via Raman spectroscopy in order to assess changes in protein conformation that may result from the electrospinning process. Although the solvent casting process was shown to result in predominantly beta-sheet conformation similar to that observed in the bulk, the electrospinning process causes a major change in conformation from beta-sheet to alpha-helix. A possible mechanism involving electric field-induced stabilization of alpha-helical segments in HFIP solution during the electrospinning process is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm049296hDOI Listing

Publication Analysis

Top Keywords

electrospinning process
12
dragline spider
8
spider silk
8
raman spectroscopy
8
effects electrospinning
4
electrospinning solution
4
solution casting
4
casting protocols
4
protocols secondary
4
secondary structure
4

Similar Publications

Antimicrobial resistance poses a growing threat to public health globally. Multidrug resistant Pseudomonas (P.) aeruginosa is detected in many infected wounds and is very challenging to treat with antibiotics.

View Article and Find Full Text PDF

Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair.

Regen Biomater

December 2024

Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany.

Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors.

View Article and Find Full Text PDF

The selection of a biomaterial plays a very important role for the development of scaffolds for biomedical applications. Amidst, the development of nanofibrous scaffolds through electrospinning technique by selecting a suitable polymer is of more importance. Poly (2-ethyl-2-oxazoline) (PEOX) is one among the selected polymers that can be employed for electrospinning for the development of scaffolds for biomedical applications.

View Article and Find Full Text PDF

Rapid-release and user-friendly costunolide/dehydrocostuslactone hydrophilic nanofibers: Therapeutic effects on acute gastric ulcers.

Int J Pharm

January 2025

Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan-Chengdu 610106, China. Electronic address:

Gastric ulcers often cause postprandial epigastric pain, especially in acute cases. Abnormal motility, with about 50 % of patients having delayed gastric emptying, contributes to ulcer development. Costunolide (COS) and dehydrocostuslactone (DEH), derived from "Mu xiang" herbs, show potential in treating ulcers and regulating gastrointestinal motility.

View Article and Find Full Text PDF

Multifunctional electrospinning periosteum: Development status and prospect.

J Biomater Appl

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China.

In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!