Bis(acesulfamato-kappa2N3,O4)bis(2-aminopyrimidine-kappaN1)copper(II).

Acta Crystallogr C

Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139 Kurupelit Samsun, Turkey.

Published: May 2005

In the crystal structure of the title compound, bis(2-aminopyrimidine-kappaN1)bis[6-methyl-1,2,3-oxathiazin-4(3H)-one 2,2-dioxide(1-)-kappa2N3,O4]copper(II), [Cu(C4H4NO4S)2(C4H5N3)2], the first mixed-ligand complex of acesulfame, the CuII centre resides on a centre of symmetry and has an octahedral geometry that is distorted both by the presence of four-membered chelate rings and by the Jahn-Teller effect. The equatorial plane is formed by the N atoms of two aminopyrimidine (ampym) ligands and by the weakly basic carbonyl O atoms of the acesulfamate ligands, while the more basic deprotonated N atoms of these ligands are in the elongated axial positions with a strong misdirected valence. The crystal is stabilized by pyrimidine ring stacking and by intermolecular hydrogen bonding involving the NH2 moiety of the ampym ligand and the carbonyl O atom of the acesulfamate moiety.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0108270105008188DOI Listing

Publication Analysis

Top Keywords

bisacesulfamato-kappa2n3o4bis2-aminopyrimidine-kappan1copperii crystal
4
crystal structure
4
structure title
4
title compound
4
compound bis2-aminopyrimidine-kappan1bis[6-methyl-123-oxathiazin-43h-one
4
bis2-aminopyrimidine-kappan1bis[6-methyl-123-oxathiazin-43h-one 22-dioxide1--kappa2n3o4]copperii
4
22-dioxide1--kappa2n3o4]copperii [cuc4h4no4s2c4h5n32]
4
[cuc4h4no4s2c4h5n32] mixed-ligand
4
mixed-ligand complex
4
complex acesulfame
4

Similar Publications

The nanoscale organization of the Nipah virus fusion protein informs new membrane fusion mechanisms.

Elife

January 2025

Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.

Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage.

View Article and Find Full Text PDF

Single crystals that do not obey translational symmetry have been reported in various material systems. In polymers, twisted crystals are typically formed in banded spherulites, while a class of non-flat polymer single crystals (PSCs) has been observed. Herein, we report the formation of scrolled single crystals of biodegradable polymer poly(L-lactic acid) (PLLA).

View Article and Find Full Text PDF

Atomistic Structure Investigation of Eu-Doped ZnO Nanosponges.

Inorg Chem

January 2025

Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.

Zinc oxide (ZnO) is a semiconductor with a wide range of applications, and often the properties are modified by metal-ion doping. The distribution of dopant atoms within the ZnO crystal strongly affects the optical and magnetic properties, making it crucial to comprehend the structure down to the atomic level. Our study reveals the dopant structure and its contents in Eu-doped ZnO nanosponges with up to 20% Eu-O clusters.

View Article and Find Full Text PDF

A pair of aza-BODIPY isomers, 1,7-di--butyl-3,5-dinaphthyl (Nap-BDP) and 1,7-dinaphthyl-3,5-di--butyl (revNap-BDP), were prepared in this study. According to the single crystal X-ray analysis, Nap-BDP exhibited an orthogonal structure. Owing to the difference in orthogonality and -Bu rotation between Nap-BDP and revNap-BDP, their spectral performances, including maximum absorption and emission, full width at half maximum, fluorescence quantum yield, photostability, singlet oxygen generation and photothermal conversion efficiency, were obviously different.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!