AI Article Synopsis

  • Research explored how liposomes interact with wool fibers during dyeing, focusing on two types of dyes: Acid Green 27 (hydrophobic) and Acid Green 25 (hydrophilic).
  • Three dyeing protocols were tested: (1) without liposomes, (2) with added phosphatidylcholine (PC) liposomes, and (3) with wool pre-treated with PC liposomes.
  • Results showed liposomes enhance dye retention in the bath, especially for the hydrophobic dye, and that liposome treatment alters the wool fiber's structure, which may boost dye absorption during the dyeing process.

Article Abstract

Despite the promising application of liposomes in wool dyeing, little is known about the mechanism of liposome interactions with the wool fiber and dyestuffs. The kinetics of wool dyeing by two dyes, Acid Green 27 (hydrophobic) and Acid Green 25 (hydrophilic), were compared in three experimental protocols: (1) without liposomes, (2) in the presence of phosphatidylcholine (PC) liposomes, and (3) with wool previously treated with PC liposomes. Physicochemical interactions of liposomes with wool fibers were studied under experimental dyeing conditions with particular interest in the liposome affinity to the fiber surface and changes in the lipid composition of the wool fibers. The results obtained indicate that the presence of liposomes favors the retention of these two dyes in the dyeing bath, this effect being more pronounced in case of the hydrophobic dye. Furthermore, the liposome treatment is accompanied by substantial absorption of PC by wool fibers with simultaneous partial solubilization of their polar lipids (more evident at higher temperatures). This may result in structural modification of the cell membrane complex of wool fibers, which could account for a high level of the dye exhaustion observed at the end of the liposome dyeing process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la030385+DOI Listing

Publication Analysis

Top Keywords

wool fibers
16
wool dyeing
12
liposomes wool
12
wool
9
acid green
8
dyeing
6
liposomes
6
physicochemical aspects
4
aspects liposome-wool
4
liposome-wool interaction
4

Similar Publications

Investigation of Damping Properties of Natural Fiber-Reinforced Composites at Various Impact Energy Levels.

Polymers (Basel)

December 2024

Department of Automotive Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey.

Natural fiber-reinforced composites are composite materials composed of natural fibers, such as plant fibers and synthetic biopolymers. These environmentally friendly composites are biodegradable, renewable, cheap, lightweight, and low-density, attracting attention as eco-friendly alternatives to synthetic fiber-reinforced composites. In this study, natural fiber-reinforced polymer foam core layered composites were produced for the automotive industry.

View Article and Find Full Text PDF

Experimental study on hydrophysical properties and slope planting of ecological composite material solidified loess.

J Environ Manage

January 2025

School of Geological Engineering and Geomatics, Chang'an University, Xi'an, 710054, China. Electronic address:

The construction of engineering projects in the Chinese Loess Plateau has resulted in large areas of exposed slopes, increasing the risk of soil erosion. Restoring the slope ecosystem is an effective means to reduce soil erosion, prevent soil and water loss, and maintain slope stability. Ecological slope protection using bio-gum solidified fiber-reinforced loess (GFSL) has been proven to achieve good vegetation restoration effects, but there remains a problem of low vegetation coverage in the early stage of protection.

View Article and Find Full Text PDF

Screened of long non-coding RNA related to wool development and fineness in Gansu alpine fine-wool sheep.

BMC Genomics

January 2025

Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.

Wool growth and fineness regulation is influenced by some factors such as genetics and environment. At the same time, lncRNA participates in numerous biological processes in animal production. In this research, we conducted a thorough analysis and characterization of the microstructure of wool, along with long non-coding RNAs (lncRNAs), their target genes, associated pathways, and Gene Ontology terms pertinent to the wool fineness development.

View Article and Find Full Text PDF

Wool quality is a crucial economic trait in Angora rabbits, closely linked to hair follicle (HF) growth and development. Therefore, understanding the molecular mechanisms of key genes regulating HF growth and wool fiber formation is essential. In the study, fine- and coarse-wool groups were identified based on HF morphological characteristics of Zhexi Angora rabbits.

View Article and Find Full Text PDF

Dyeing of synthetic fiber-based wool blended fabrics in supercritical carbon dioxide.

Sci Rep

December 2024

Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, 12622, Giza, Egypt.

Development of supercritical carbon dioxide (SC-CO) dyeing technology for natural fabrics and their blended fabrics is essential for the textile industry due to environmental and economic considerations. Wool (W), polyester (PET) and nylon (N) fabrics and their wool/polyester (W/PET) and wool/nylon (W/N) blended fabrics were dyed in SC-CO medium with a synthesized reactive disperse dye containing a vinylsulphone (VS) reactive group, which behaves as a disperse dye for synthetic fibers and a reactive dye for protein fibers. The SC-CO dyeing performance of all fabrics was investigated in terms of color strength, fixation, colorimetric and fastness measurements and compared with the conventional aqueous dyeing method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!