A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. | LitMetric

Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms.

IEEE Trans Pattern Anal Mach Intell

Departamento de Informática, Universidade Federal do Paraná, Caixa Postal 19092, Curitiba, PR, Brazil 81531-980.

Published: May 2005

This paper addresses the range image registration problem for views having low overlap and which may include substantial noise. The current state of the art in range image registration is best represented by the well-known iterative closest point (ICP) algorithm and numerous variations on it. Although this method is effective in many domains, it nevertheless suffers from two key limitations: It requires prealignment of the range surfaces to a reasonable starting point and it is not robust to outliers arising either from noise or low surface overlap. This paper proposes a new approach that avoids these problems. To that end, there are two key, novel contributions in this work: a new, hybrid genetic algorithm (GA) technique, including hillclimbing and parallel-migration, combined with a new, robust evaluation metric based on surface interpenetration. Up to now, interpenetration has been evaluated only qualitatively; we define the first quantitative measure for it. Because they search in a space of transformations, GAs are capable of registering surfaces even when there is low overlap between them and without need for prealignment. The novel GA search algorithm we present offers much faster convergence than prior GA methods, while the new robust evaluation metric ensures more precise alignments, even in the presence of significant noise, than mean squared error or other well-known robust cost functions. The paper presents thorough experimental results to show the improvements realized by these two contributions.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2005.108DOI Listing

Publication Analysis

Top Keywords

range image
12
image registration
12
surface interpenetration
8
low overlap
8
robust evaluation
8
evaluation metric
8
robust
5
precision range
4
registration robust
4
robust surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!