Formation of locomotor patterns in decerebrate cats in conditions of epidural stimulation of the spinal cord.

Neurosci Behav Physiol

Movement Physiology Laboratory, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarov Bank, 199034 St. Petersburg, Russia.

Published: March 2005

Acute experiments on decerebrate cats were performed to study the mechanism of formation of the locomotor pattern in conditions of epidural stimulation of the spinal cord. These studies showed that only segments L3-L5 contributed to generating the stepping pattern in the hindlimbs. At the optimum frequency (5-10 Hz) of stimulation of these segments, formation of electromyographic burst activity in the flexor muscles was mainly due to polysynaptic reflex responses with latencies of 80-110 msec. In the extensor muscles, this process involved the interaction of a monosynaptic reflex and polysynaptic activity. In epidural stimulation, the stepping pattern was specified by spinal structures, while peripheral feedback had modulatory influences.

Download full-text PDF

Source

Publication Analysis

Top Keywords

epidural stimulation
12
formation locomotor
8
decerebrate cats
8
conditions epidural
8
stimulation spinal
8
spinal cord
8
stepping pattern
8
locomotor patterns
4
patterns decerebrate
4
cats conditions
4

Similar Publications

Background: Preliminary studies on epidural motor cortex stimulation (eMCS) for the treatment of drug-resistant neuropathic pain have supported the extension to novel stimulation waveforms, in particular burstDR. However, only a low level of evidence is available. The aim of this retrospective observational study was to compare the analgesic efficacy of burstDR versus tonic eMCS.

View Article and Find Full Text PDF

Purpose: The background of this scoping review is that pediatric neurosurgery in the vicinity of motor pathways is associated with the risk of motor tract damage. By measuring transcranial electrical evoked potentials in muscles (electromyogram) or from the spinal cord (epidural D-wave) functional disorders and impending damage can be detected during surgery and countermeasures can be initiated. The objective was to summarize stimulation techniques of transcranial electrical stimulation and the success rate of motor evoked potentials exclusively in children undergoing neurosurgery.

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes severe motor and sensory deficits, and there are currently no approved treatments for recovery. Nearly 70% of patients with SCI experience pathological muscle cocontraction and spasticity, accompanied by clinical signs such as patellar hyperreflexia and ankle clonus. The integration of epidural electrical stimulation (EES) of the spinal cord with rehabilitation has substantial potential to improve recovery of motor functions; however, abnormal muscle cocontraction and spasticity may limit the benefit of these interventions and hinder the effectiveness of EES in promoting functional movements.

View Article and Find Full Text PDF

Background: Stimulating diuresis is crucial in heart failure (HF) treatment. Diuretic resistance develops in approximately 30% to 45% of patients with HF.

Objective: We investigated the feasibility and safety of lateral epidural stimulation (LES) to enhance diuresis by stimulating renal afferent sensory nerves.

View Article and Find Full Text PDF

Background: 95% of men with spinal cord injuries exhibit difficulties with sexual function, including erectile dysfunction, anejaculation, retrograde ejaculation, poor ejaculatory force, and poor sperm quality.

Aim: The primary goal is to determine if well-established interventions, such as spinal cord epidural stimulation, are a feasible treatment for sexual dysfunction and if locomotor recovery training can be used to improve ejaculatory function in a rodent model of spinal cord injury (SCI).

Methods: Male Wistar rats underwent thoracic laminectomies (shams), spinal cord transections, or moderate spinal cord contusion injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!