The structure of self-assembled monolayers ofp-terphenyl-4-carboxylic acid and the mixed monolayers of this acid with n-hexadecanoic acid on silver surface were studied by reflection-IR spectroscopy, near-edge X-ray absorption fine structure (NEXAFS) measurement, X-ray photoemission electron microscopy (X-PEEM), and atomic force microscopy. Exposure of the p-terphenyl-4-carboxylate monolayer to H2S vapor resulted in reorganization of the film structure into clusters of the corresponding free acids, in tens of nanometer dimension. Exposure of the mixed monolayer to H2S resulted in reorganization of the mixed monolayer film into phase-separated clusters of respective component molecules. The saturated aliphatic acid formed clusters of submicrometer size, whereas the p-terphenyl-4-carboxylic acid formed clusters of tens of nanometer size, presumably due to different surface mobility and/or intermolecular interaction of the two types of molecule. Restoration of the monolayer film from the clusters, driven by the reaction between the free acid molecules and the basic surface sites, proceeded at different speeds for the two types of molecules. The saturated acid monolayer was restored much faster than the p-terphenyl-4-carboxylic acid monolayer. A domain-separated monolayer in several micrometers scale was obtained. The process was imaged by tapping mode atomic force microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la0353881DOI Listing

Publication Analysis

Top Keywords

mixed monolayer
12
reorganization mixed
8
monolayer
8
silver surface
8
acid
8
atomic force
8
force microscopy
8
monolayer h2s
8
tens nanometer
8
monolayer film
8

Similar Publications

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

Self-assembled monolayers (SAM) as hole transport layers have been widely used in high-efficiency inverted perovskite solar cells (PSCs) exceeded 26 %. However, the poor coverage and non-uniform distribution on the substrate of SAM further restrict the improvement of device performance. Herein, we utilize the mixed SAM strategy via the MeO-2PACz along with perfluorotripropylamine (FC-3283) to improve the SAM coverage, aiming to accelerate the carrier transport, promote the perovskite growth, regulate the surface energy levels and suppress the nonradiative recombination.

View Article and Find Full Text PDF

Dipole Potential of Monolayers with Biologically Relevant Lipid Compositions.

Molecules

December 2024

Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.

The membrane dipole potential that arises from the interfacial water and constitutive dipolar groups of lipid molecules modulates the interaction of amphiphiles and proteins with membranes. Consequently, its determination for lipid mixtures resembling the existing diversity in biological membranes is very relevant. In this work, the dipole potentials of monolayers, formed at the air-water interface, from pure or mixed lipids (1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl--glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl--glycero-3-phosphatidyserine (POPS), sphingomyelin (SpM) and cholesterol) were measured and correlated with the mean area per lipid.

View Article and Find Full Text PDF

Synthesis of ultra-large diameter graphene oxide flakes from natural flake graphite.

Heliyon

December 2024

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.

Graphene and its derivatives are widely used in various fields due to their unique two-dimensional lamellar structure. This study aims to synthesize ultra-large graphene oxide (GO) sheets from natural flake graphite and investigate the factors influencing their size. Using a two-intercalation method based on the modified Hummers' method, we address the challenge of intercalating large-diameter graphene oxide by employing a secondary intercalation technique.

View Article and Find Full Text PDF

Inflammation is a critical driver of the early stages of diabetic retinopathy (DR) and offers an opportunity for therapeutic intervention before irreversible damage and vision loss associated with later stages of DR ensue. Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown mixed efficacy in slowing early DR progression, notably including severe adverse side effects likely due to their nonselective inhibition of all downstream signaling intermediates. In this study, we investigated the role of prostanoids, the downstream signaling lipids whose production is inhibited by NSAIDs, in promoting inflammation relevant to early-stage DR in two human retinal cell types: Müller glia and retinal microvascular endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!