The aim of this study was to explore the effect of cerium ions on the formation and structure of hydroxyapatite (HAP). All particles, prepared by hydrothermal method, were synthesized at varied X(Ce) = Ce/(Ca + Ce) (from 0 to 10%) with the atomic ratio (Ce + Ca)/P fixed at 1.67. Their morphology, composition and crystal structure were characterized by TEM, EPMA, XRD and FTIR. The results showed that in this composition range the apatite structure is maintained, Ce3+ ions could enter the crystal lattice of apatite and substitute Ca2+ ions. The doping of Ce3+ ions resulted in the decrease of the crystallite size with increase in X(Ce). The HAP particles without doping were short rods having a diameter from 10 to 20 nm and a length from 30 to 50 nm. They grew into long needles upon increasing X(Ce).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-005-6981-8 | DOI Listing |
Int Dent J
January 2025
Department of Microbiology, University of Dhaka, Dhaka, Dhaka, Bangladesh.
Hydroxyapatite nanoparticles (HANPs) are becoming increasingly crucial in dental implant applications as they are highly compatible with biological systems, actively support biological processes, and closely resemble bone minerals. This review covers the latest progress in how HANPs are made, studied, and used in dentistry. It looks at critical methods for creating HANPs, such as sol-gel, microwave hydrothermal synthesis, and biomimetic approaches, and how they affect the particles' size, structure, and activity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Yıldız Technical University, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, İstanbul, Turkey.
The development of hybrid materials that integrate bioactive and antimicrobial properties within a biodegradable and biocompatible polymer matrix is a key focus in current biomedical research and applications. A significant research gap exists in the field of PHBV nanocomposites, particularly concerning those that simultaneously incorporate both ZnO and HAP particles. This study focuses on the fabrication and characterization of innovative hybrid bionanocomposites composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) combined with zinc oxide (ZnO) and silicon-doped hydroxyapatite (SiHAP) nanocrystals.
View Article and Find Full Text PDFACS Omega
December 2024
School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador.
Samarium-doped nanohydroxyapatite is a biomaterial with nerve regeneration activity and bioimaging. In this work, Sm/HAp; (Ca Sm (PO)(OH)) (0 ≤ ≤ 1) was synthesized using the hydrothermal method and thermally treated from 200 to 800 °C. The samples were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, and luminescence spectroscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 76001 Zlín, Czech Republic.
Bone tissue engineering demands advanced biomaterials with tailored properties. In this regard, composite scaffolds offer a strategy to integrate the desired functionalities. These scaffolds are expected to provide sufficient cellular activities while maintaining the required strength necessary for the bone repair for which they are intended.
View Article and Find Full Text PDFRSC Adv
December 2024
Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
Waste generation from fish processing sectors has become a significant environmental concern. This issue is exacerbated in countries with high aquaculture production and inefficient fish scale (FS) utilization. This study prepared and compared highly crystalline hydroxyapatite (HAp) from the FS of an anadromous fish, (I-HAp), and a freshwater fish, (R-HAp).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!