Background: Endogenous morphine and proopiomelanocortin-derived peptide-like molecules were identified in molluscan tissues, including the nervous system, supporting their ancient phylogeny. Their presence and function in "simple" animals, demonstrates their involvement in mechanisms underlying the stress response, preceding the mammalian neuroendocrine axis.

Material/methods: Immunocytochemical analysis was used to study the localization of morphine- and adrenocorticotropic hormone (ACTH)-like material in the nervous system of Planorbarius corneus, Mytilus galloprovincialis, Lymnaea stagnalis and Viviparus ater. Acute stress experiments were performed on P. corneus and, by radioimmune assay, we quantified the expression of an ACTH-like peptide in control and stressed animals.

Results: We demonstrate that in mollusks the presence of a morphine-like compound is differentially distributed in neuronal structures containing an ACTH-like molecule. In P. corneus, the two immunoreactivities appear to be colocalized in neuronal bodies and axonal endings, suggesting a role in neurotransmission/neuromodulation. We also found that these molecules are released in the hemolymph, suggesting neuroendocrine-immunoregulatory communication. Comparative studies on the other mollusks gave different distribution pictures of the two immunoreactivities. In P. corneus, following experimental trauma, the levels of both the messengers increase in ganglia and hemolymph at different times, which can be related to their postulated roles.

Conclusions: In mollusks more than in mammals, there is a diversified but close association between morphine and ACTH, both acting in a stress response possibly exerting reciprocal influences, suggesting that the relationship evolved in invertebrates and was conserved during evolution.

Download full-text PDF

Source

Publication Analysis

Top Keywords

endogenous morphine
8
morphine acth
8
nervous system
8
stress response
8
acth association
4
association neural
4
neural tissues
4
tissues background
4
background endogenous
4
morphine proopiomelanocortin-derived
4

Similar Publications

Background: Postoperative pain is a common complication following surgery, with severity and duration varying between patients. Chronic postoperative pain after inguinal hernia surgery has an incidence rate of approximately 10%. Risk factors for acute and chronic pain following hernia surgery include age, sex, psychosocial factors, and demographic background.

View Article and Find Full Text PDF

Structure-Activity Relationships and Molecular Pharmacology of Positive Allosteric Modulators of the Mu-Opioid Receptor.

ACS Chem Neurosci

January 2025

Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.

Positive allosteric modulation of the mu-opioid receptor is a promising strategy to address the ever-growing problem of acute and chronic pain management. Positive allosteric modulators (PAMs) of the mu-opioid receptor could be employed to enhance the efficacy of endogenous opioid peptides to a degree that provides pain relief without the need for traditional opioid drugs. Alternatively, PAMs might be used to enhance the action of opioid drugs and so provide an opioid-sparing effect, allowing for the use of lower doses of opioid agonists and potentially decreasing associated side effects.

View Article and Find Full Text PDF

The dual modulating effects of neuropeptide FF on morphine-induced analgesia at the spinal level.

Neuroscience

January 2025

Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China. Electronic address:

Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.

View Article and Find Full Text PDF

Positive allosteric modulation of µ-opioid receptor - A new possible approach in the pain management?

Biochem Pharmacol

November 2024

Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland. Electronic address:

The antinociceptive effect of the opioid drugs is achieved through activation of the µ-opioid receptor (MOP). The orthosteric and allosteric sites of opioid receptors may be modulated, orthosteric site by endogenous i.e.

View Article and Find Full Text PDF

Distinguishing the brain mechanisms affected by distinct addictive drugs may inform targeted therapies against specific substance use disorders (SUDs). Here, we explore the function of a drug-associated, transcriptionally repressive transcription factor (TF), ZFP189, whose expression in the nucleus accumbens (NAc) facilitates cocaine-induced molecular and behavioral adaptations. To uncover the necessity of ZFP189-mediated transcriptional control in driving cocaine-induced behaviors, we created synthetic ZFP189 TFs of distinct transcriptional function, including ZFP189, which activates the expression of target genes and exerts opposite transcriptional control to the endogenously repressive ZFP189.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!