End-tidal carbon dioxide (CO2) monitoring is useful in the prehospital setting, emergency department, intensive care unit, and operating room. Capnography provides valuable, timely information about the function of both the cardiovascular and respiratory systems. End-tidal CO2 monitoring is the single most useful method in confirming endotracheal tube position. It also provides information about dead space, cardiac output, and airway resistance. A thorough understanding of cardiopulmonary physiology and the technical nuances of capnometry is required for its optimal use in children. This review examines the basic physiology pertinent to end-tidal CO2 monitoring, its clinical applications, and evidence supporting its use in infants and children.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.pec.0000159064.24820.bd | DOI Listing |
J Biosci Bioeng
January 2025
Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, Niigata, 940-2188 Japan. Electronic address:
Gravity-driven microfluidic chips offer portability and flexibility in different settings because pumps and connecting tubes are unnecessary for driving fluid flow. In a previous study, human induced pluripotent stem cells were cultured using gravity-driven microfluidics, with the liquid flow rate regulated by a tilting table. However, instability in cell culture has been observed, occasionally leading to cell death owing to unknown causes.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.
View Article and Find Full Text PDFSci Rep
January 2025
College of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, People's Republic of China.
The construction of a predictive model that accurately reflects the spontaneous combustion temperature of coal in goaf is fundamental to monitoring and early warning systems for thermodynamic disasters, including coal spontaneous combustion and gas explosions. In this paper, on the basis of programming temperature experiment and industrial analysis, 381 data sets of 9 coal types are established, and feature selection was executed through the utilization of the Pearson correlation coefficient, ultimately identifying O, CO, CO, CH, CH, CH/CH, CH/CH, CH/CH, CO/CO, and CO/O as input indicators for the prediction model. The chosen indicator data were divided into training and testing sets in a 4:1 ratio, the Particle Swarm Optimization (PSO) methodology was applied to optimize the parameters of the XGBoost regressor, and a universal PSO-XGBoost prediction model is proposed.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
School of Engineering, Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia.
Injecting CO into deep geological formations can be an effective carbon removal and storage technology to mitigate global climate change. Interaction of injected CO with rock formations changes pH and hydrochemistry within the deep injection zone (> 800 m depth). However, cap rocks and multiple tight aquitards typically act as barriers to protect the shallow aquifer from changes in the injection zone.
View Article and Find Full Text PDFPlant Physiol
January 2025
Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!