Alterations in the cellular architecture, adhesion, and/or loss of glomerular podocytes are causal factors in the development of proteinuria and the progression to end-stage renal failure. With the use of an inducible podocyte differentiation system, it was found that the cellular levels of PINCH-1, integrin linked kinase (ILK), and alpha-parvin, cytoplasmic components of cell-extracellular matrix adhesions, were significantly increased during podocyte differentiation. Concomitantly, an increased amount of the PINCH-1-ILK-alpha-parvin complex was detected in the differentiated, foot process-containing podocytes. Overexpression of the PINCH-1-binding ankyrin repeat domain of ILK but not that of a PINCH-1-binding defective mutant form of the ankyrin domain effectively inhibited the formation of the PINCH-1-ILK-alpha-parvin complex. Disruption of the PINCH-1-ILK-alpha-parvin complex significantly reduced the podocyte-matrix adhesion and foot process formation. Furthermore, a marked increase of apoptosis in the podocytes in which the assembly of the PINCH-1-ILK-alpha-parvin complex was compromised was detected. Inhibition of ILK with a small compound inhibitor also altered podocyte cytoskeleton and increased apoptosis. Finally, it is shown that alpha-parvin is phosphorylated in podocytes. Mutations at the alpha-parvin N-terminal proline-directed serine phosphorylation sites reduced its complex formation with ILK and resulted in defects in podocyte adhesion, architecture, and survival. These results provide important evidence for a crucial role of the PINCH-1-ILK-alpha-parvin complex in the control of podocyte adhesion, morphology, and survival.

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2004121112DOI Listing

Publication Analysis

Top Keywords

pinch-1-ilk-alpha-parvin complex
20
podocyte adhesion
12
adhesion architecture
8
architecture survival
8
podocyte differentiation
8
complex
7
podocyte
6
adhesion
5
pinch-1-ilk-alpha-parvin
5
formation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!