G-protein coupled receptors (GPCRs) signal via G-proteins to intracellular second messengers. Assays that link transcription of a detectable reporter to promoters that are activated by such signaling cascades are highly sensitive and allow screening for compounds that either activate or inactivate a GPCR of interest. This study describes the development and performance of an antagonistic screen on the human gonadotropin releasing hormone receptor (GnRH-R). Compounds (245,000) were tested in a high-throughput screen using a Chinese hamster ovary cell line stably expressing the human GnRH-R and the Ca2+ sensitive reporter nuclear factor activated in T-cells/ activator protein-1-beta-lactamase. In total, 4,160 active compounds were identified. Colored and toxic compounds, as well as dust and compound aggregates, have been depicted as artifacts. To deselect non-target hits, several follow-up assays, including luminescent and fluorescent Ca2+ mobilization assays and radioligand binding, were developed for the GnRH-R. These assays were validated using peptide and low-molecular-weight GnRH-R reference compounds before hits from screening were also profiled in these assays. For several reference compounds the use of different assay technologies resulted in a poor correlation of potency values. In conclusion, beta-lactamase as a primary high-throughput screening assay is a powerful complementation to other screening technologies. The beta-lactamase technology has several advantages, including lack of cell lysis and ratiometric read-out, which augments assay robustness. Based on technology comparison, it is not adequate to assume that the same hits would be found regardless of which assay technology is used.

Download full-text PDF

Source
http://dx.doi.org/10.1089/adt.2005.3.143DOI Listing

Publication Analysis

Top Keywords

high-throughput screening
8
human gonadotropin
8
gonadotropin releasing
8
releasing hormone
8
hormone receptor
8
reference compounds
8
compounds
6
assays
5
screening beta-lactamase
4
beta-lactamase reporter-gene
4

Similar Publications

Blueberry plants are among the most important fruit-bearing shrubs, but they have shallow, hairless roots that are not conducive to water and nutrient uptake, especially under drought conditions. Therefore, the mechanism underlying blueberry root drought tolerance should be clarified. Hence, we established a yeast expression library comprising blueberry genes associated with root responses to drought stress.

View Article and Find Full Text PDF

Amines are widespread environmental pollutants that may pose health risks. Specifically, the N-dealkylation of amines mediated by cytochrome P450 enzymes (P450) could influence their metabolic transformation safety. However, conventional experimental and computational chemistry methods make it difficult to conduct high-throughput screening of N-dealkylation of emerging amine contaminants.

View Article and Find Full Text PDF

The growing popularity of e-cigarettes has raised significant concerns about the safety and potential abuse of these products. Compounds originally used in the medical field, such as etomidate, metomidate, and isopropoxate, have been illegally added to e-liquids, posing substantial risks to consumer health, and facilitating the misuse of illicit drugs. To address these concerns, this study developed a rapid and efficient method for detecting etomidate, metomidate, and isopropoxate in e-liquids using thermal desorption electrospray ionization coupling triple quadrupole mass spectrometry (TD-ESI/MS/MS).

View Article and Find Full Text PDF

Concave Microwell Formation Induced by PDMS Water Vapor Permeability for Spheroid Generation.

Micromachines (Basel)

December 2024

Institute of Life Science and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.

This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques such as photolithography that are resource-intensive and complex. PDMS is more permeable to water vapor than to other gas molecules, resulting in the formation of microwells.

View Article and Find Full Text PDF

Microfluidic Technologies in Advancing Cancer Research.

Micromachines (Basel)

November 2024

Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.

This review explores the significant role of microfluidic technologies in advancing cancer research, focusing on the below key areas: droplet-based microfluidics, organ-on-chip systems, paper-based microfluidics, electrokinetic chips, and microfluidic chips for the study of immune response. Droplet-based microfluidics allows precise manipulation of cells and three-dimensional microtissues, enabling high-throughput experiments that reveal insights into cancer cell migration, invasion, and drug resistance. Organ-on-chip systems replicate human organs to assess drug efficacy and toxicity, particularly in the liver, heart, kidney, gut, lung, and brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!