A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formation of refractory ring-expanded triazine intermediates during the photocatalyzed mineralization of the endocrine disruptor amitrole and related triazole derivatives at UV-irradiated TiO2/H2O interfaces. | LitMetric

Amitrole (ATz, 3-amino-1H-1,2,4-triazole) is a widely employed herbicide with strong estrogenic activity that can lead to abnormalities of the thyroid gland and can cause mutations. The photocatalytic transformation of ATz was carried out at the UV-irradiated TiO2/H2O interface, along with the triazole derivatives Tz (1H-1,2,4-triazole) and DaTz (3,5-diamino-1H-1,2,4-triazole) to assess the decomposition of these herbicides, to identify intermediates, and to elucidate some mechanistic details of the ATz degradation. Conversion of the nitrogens of these triazoles to NH4+ and/ or NO3- ions occurs competitively and depends on the number of amine functions on the five-membered triazole rings. Photomineralization of the substrates in terms of loss of nitrogen to NH4+/NO3- was rather low (ca. 25-40%) for each of the triazoles, whereas evolution of CO2 (loss of TOC) was more significant (60-70%), indicating considerable retention of nitrogen in the intermediate products. UV-Vis spectroscopy, TOC assays, FT-IR spectroscopy, proton NMR spectrometry, electrospray LC-MS, and molecular orbital calculations were brought to bear in assessing the temporal course of the photocatalyzed process(es). Results show that after cleavage of the triazole ring, the various intermediate fragments recombine to yield ring-expanded six-membered triazine intermediates, which slowly degrade to give the refractory cyanuric acid under the conditions used.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es049791lDOI Listing

Publication Analysis

Top Keywords

triazine intermediates
8
triazole derivatives
8
uv-irradiated tio2/h2o
8
formation refractory
4
refractory ring-expanded
4
ring-expanded triazine
4
intermediates photocatalyzed
4
photocatalyzed mineralization
4
mineralization endocrine
4
endocrine disruptor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!