Phosphate sorption on Fe- and Al-oxide minerals helps regulate the solubility and mobility of P in the environment. The objective of this study was to characterize phosphate adsorption and precipitation in single and binary systems of Fe- and Al-oxide minerals. Varying concentrations of phosphate were reacted for 42 h in aqueous suspensions containing goethite, ferrihydrite, boehmite, or noncrystalline (non-xl) Al-hydroxide, and in 1:1 (by mass) mixed-mineral suspensions of goethite/boehmite and ferrihydrite/ non-xl Al-hydroxide at pH 6 and 22 degrees C. X-ray absorption near edge structure (XANES) spectroscopy was used to detect precipitated phosphate and distinguish PO4 associated with Fe(III) versus Al(III) in mixed-mineral systems. Changes in the full width at half-maximum height (fwhm) in the white-line peak in P K-XANES spectra provided evidence for precipitation in Al-oxide single-mineral systems, but not in goethite or ferrihydrite systems. Similarly, adsorption isotherms and XANES data showed evidence for precipitation in goethite/boehmite mixtures, suggesting that mineral interactive effects on PO4 sorption were minimal. However, sorption in ferrihydrite/non-xl Al-hydroxide systems and a lack of XANES evidence for precipitation indicated that mineral interactions inhibited precipitation in these binary mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es049237bDOI Listing

Publication Analysis

Top Keywords

evidence precipitation
12
phosphate sorption
8
single binary
8
binary systems
8
fe- al-oxide
8
al-oxide minerals
8
goethite ferrihydrite
8
non-xl al-hydroxide
8
systems
6
phosphate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!