Several studies have shown that beta-amyloid (beta A) deposits are associated with damage of cerebral vessels and that in Alzheimer's disease (AD) beta A peptides are cytotoxic for cerebral endothelial cells (ECs). However, little is known about the mechanisms underlying these effects of beta A peptides. Hence, we have investigated the effects of beta A(1-40) and beta A(1-42) on rat neuromicrovascular ECs (NECs) cultured in vitro. NECs were isolated, plated (1.5x10(4) cells/cm2) on collagen/fibronectin-coated Petri dishes and cultured in EC growth medium MV2. After 24 h of culture, NECs were incubated with beta A(1-40) and beta A(1-42) (10(-9) or 10(-7) M) and cultured for another 3, 24 or 48 h. Cell viability was assayed by either trypan blue exclusion or by measuring redox activity (MTS assay). Cell proliferation was assessed by measuring the incorporation of 5'-bromo-2'-deoxyuridine into DNA, cell apoptosis by TUNEL assay and cell necrosis by evaluating the release of lactate dehydrogenase. The morphology of cultured NECs was examined by transmission electron microscopy. Other NECs were plated (2.5x10(4) cells/cm2) on Matrigel coated-wells and incubated for 18 h in the presence or absence of beta A peptides for in vitro angiogenesis assay. Beta A peptides significantly decreased NEC viability and enhanced cell apoptosis and necrosis rates. NEC proliferation was not significantly affected. The effects were seen after an incubation period of 3 h (and also 24 h in the case of the redox activity) but not 48 h and beta A(1-42) was much more effective in its toxic effects than beta A(1-40). NECs incubated for 24 h with beta A peptides displayed ultrastructural signs of cell degeneration. beta A peptides prevented NECs cultured on Matrigel to form a capillary-like network and image analysis showed that the downloading of dimensional and topological parameters of the meshwork was significant only in the case of the incubation with beta A(1-42). Collectively our findings allow us to conclude that i) beta A peptides exert a marked toxic effect on cultured NECs, which conceivably reduces their in vitro angiogenic activity; ii) beta A(1-42) is the more toxic form, which could suggest its main role in the pathogenesis of cerebral vessel lesions in AD and iii) the maximum toxic action occurs after a short incubation period, which could be explained by assuming that beta A peptides are unable to accumulate in NECs due to their rapid degradation, thereby allowing NECs to fully recover within 48 h.
Download full-text PDF |
Source |
---|
Front Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Pharmaceutics
December 2024
Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan.
: Alpha radionuclide therapy has emerged as a promising novel strategy for cancer treatment; however, the therapeutic potential of Ac-labeled peptides in pancreatic cancer remains uninvestigated. : In the cytotoxicity study, tumor cells were incubated with Ac-DOTA-RGD. DNA damage responses (γH2AX and 53BP1) were detected using flowcytometry or immunohistochemistry analysis.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Applied Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).
View Article and Find Full Text PDFNutrients
January 2025
Department of Neurology, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland.
Background: Calcitriol, beyond its well-established role in calcium and phosphate homeostasis, contributes to immunological processes. No known vitamin D dosage regimen effectively corrects the deficiency while accounting for immunoregulatory effects. Therefore, the purpose of this assessment was to determine whether regular administration of low doses of vitamin D might correct deficiency and have immunoregulatory effects.
View Article and Find Full Text PDFNutrients
January 2025
Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
Background/objectives: Time-restricted eating (TRE) has been associated with beneficial effects for inflammation and oxidative stress; however, the effects of TRE on inflammation and oxidative stress in the aging population have not been explored.
Methods: This secondary analysis tested the effects of TRE on pro-inflammatory (hs-CRP [high-sensitivity C-reactive protein], IL-1β [interleukin 1 beta], IL-6 [interleukin 6], TNF-α [tumor necrosis factor alpha]) and oxidative stress (8-isoprostane) biomarkers in ten overweight older adults (mean age = 77.1 ± 6.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!