In this study, we demonstrate that a loss of p53 sensitizes tumor cells to actin damage. Using a novel oocyte-based screening system, we identified natural compounds that inhibit cytokinesis. Among these, pectenotoxin-2 (PTX-2), which was first identified as a cytotoxic entity in marine sponges, which depolymerizes actin filaments, was found to be highly effective and more potent to activate an intrinsic pathway of apoptosis in p53-deficient tumor cells compared to those with functional p53 both in vitro and in vivo. Other agents that depolymerize or knot actin filaments were also found to be toxic to p53-deficient tumors. In p53-deficient cells, PTX-2 triggers apoptosis through mitochondrial dysfunction, and this is followed by the release of proapoptotic factors and caspase activation. Furthermore, we observed Bax activation and Bim induction only in p53-deficient cells after PTX-2 treatment. RNA interference of either Bim or Bax resulted in the inhibition of caspases and apoptosis induced by PTX-2. However, the small interfering RNAs (SiRNA) of Bim blocked a conformational change of Bax, but Bax SiRNA did not affect Bim expression. Therefore, these results suggest that Bim triggers apoptosis by activating Bax in p53-deficient tumors upon actin damage, and that actin inhibitors may be potent chemotherapeutic agents against p53-deficient tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1208640DOI Listing

Publication Analysis

Top Keywords

p53-deficient tumors
16
oocyte-based screening
8
apoptosis p53-deficient
8
tumor cells
8
actin damage
8
actin filaments
8
p53-deficient cells
8
cells ptx-2
8
triggers apoptosis
8
p53-deficient
7

Similar Publications

ATRX loss inhibits DDR to strengthen radio-sensitization in p53-deficent HCT116 cells.

Sci Rep

January 2025

NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.

Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.

View Article and Find Full Text PDF

Docetaxel response in BRCA1,p53-deficient mammary tumor cells is affected by Huntingtin and BAP1.

Proc Natl Acad Sci U S A

December 2024

Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.

Taxanes are frequently used anticancer drugs known to kill tumor cells by inducing mitotic aberrations and segregation defects. A defining feature of specific cancers, notably triple-negative breast cancer (TNBC) and particularly those deficient in BRCA1, is chromosomal instability (CIN). Here, we focused on understanding the mechanisms of docetaxel-induced cytotoxicity, especially in the context of BRCA1-deficient TNBC.

View Article and Find Full Text PDF

Unraveling the Guardian: p53's Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies.

Int J Mol Sci

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

DNA damage can lead to mutations that can alter the function of oncogenes or tumor suppressor genes, thus promoting the development of cancer. p53 plays a multifaceted and complex role in the DNA damage response and cancer progression and is known as the 'guardian of the gene'. When DNA damage occurs, p53 is activated through a series of post-translational modifications, which stabilize the protein and enhance its function as a transcription factor.

View Article and Find Full Text PDF

Acid-induced ion flux plays a role in pathologies where tissue acidification is prevalent, including cancer. In 2019, TMEM206 was identified as the molecular component of acid-induced chloride flux. Localizing to the plasma membrane, TMEM206 contributes to cellular processes like acid-induced cell death.

View Article and Find Full Text PDF
Article Synopsis
  • - Chromothripsis is a process where a single catastrophic event causes significant genomic rearrangements, but its variability across different tumor clones and response to treatments is not well understood.
  • - This study investigates chromothripsis in p53-deficient medulloblastoma and neural stem cells, focusing on the genomic and transcriptomic changes involved.
  • - The researchers analyze the order of genetic events, explore subclonal variation, and identify how chromothripsis influences cancer development, targeted therapies, and the fitness of neural progenitor cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!