Background: The effect of activation of endogenous transforming growth factor-beta (TGF-beta) on smooth muscle cell apoptosis was assessed in human saphenous vein.

Methods: Segments of human saphenous vein, obtained at the time of bypass graft surgery, were cultured for 14 days. During this time, smooth muscle cells accumulated in the intima as a result of proliferation and migration, partly counterbalanced by apoptotic cell death.

Results: Addition of exogenous TGF-beta(1) had no effect on smooth muscle cell proliferation or apoptosis. However, antibody neutralization of endogenous TGF-beta(1) caused significant increases in smooth muscle cell death in the media and intima without any change in proliferation. A plasmin inhibitor (alpha-N-acetyl-L-lysine methyl ester), a specific urokinase-type plasminogen activator (uPA) inhibitor (amiloride) and an anti-catalytic anti-uPA antibody all caused decreases in the tissue content of active TGF-beta and increases in smooth muscle cell death in the media and intima.

Conclusions: These data suggest that the amount of TGF-beta in human saphenous vein is sufficient, when in the active form, to protect smooth muscle cells against apoptosis. Adding exogenous TGF-beta(1) has no beneficial effect, but decreasing the amount of active TGF-beta causes smooth muscle cells to undergo apoptosis. Plasmin, generated by uPA, appears to be an important activator of endogenous latent TGF-beta.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000085657DOI Listing

Publication Analysis

Top Keywords

smooth muscle
32
muscle cell
20
human saphenous
16
cell death
12
saphenous vein
12
muscle cells
12
transforming growth
8
growth factor-beta
8
smooth
8
muscle
8

Similar Publications

Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.

View Article and Find Full Text PDF

In this study, we investigated gene expression in vitro of human primary Aortic smooth muscle cells (AoSMCs) in response to 9% physiological dynamic stretch over a 4 to 72-h timeframe using RT-qPCR. AoSMC were derived from primary culture and were exposed to continuous cycles of stretch and relaxation at 1 Hz by a computer-controlled Flex Jr.™ Tension System.

View Article and Find Full Text PDF

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

Current state of epigenetics in giant cell arteritis: Focus on microRNA dysregulation.

Autoimmun Rev

December 2024

Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. Electronic address:

Giant cell arteritis (GCA) is a primary systemic vasculitis affecting the elderly, characterized by a granulomatous vessel wall inflammation of large- and medium-sized arteries. The immunopathology of GCA is complex, involving both the innate and adaptive arms of the immune system, where a maladaptive inflammatory-driven vascular repair process ultimately results in vessel wall thickening, intramural vascular smooth muscle cell proliferation, neovascularization and vessel lumen occlusion, which can lead to serious ischemic complications such as visual loss and ischemic stroke. Over the past decade, microRNA (miRNA) dysregulation has been highlighted as an important contributing factor underlying the pathogenesis of GCA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!