ABCA5 resides in lysosomes, and ABCA5 knockout mice develop lysosomal disease-like symptoms.

Mol Cell Biol

Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.

Published: May 2005

ABCA5 is a member of the ABC transporter A subfamily, and a mouse orthologue (mABCA5) in newborn mouse brain and neural cells was identified by reverse transcription-PCR. Full-length cDNA cloning revealed that mABCA5 consists of 1,642 amino acid residues and that its putative structure is that of a full-type ABC transporter having two sets of six transmembrane segments and a nucleotide binding domain. Immunohistochemical studies revealed that mABCA5 is expressed in brain, lung, heart, and thyroid gland. A subcellular localization analysis showed that mABCA5 is a resident of lysosomes and late endosomes. Abca5(-)(/)(-) mice exhibited symptoms similar to those of several lysosomal diseases in heart, although no prominent abnormalities were found in brain or lung. They developed a dilated cardiomyopathy-like heart after reaching adulthood and died due to depression of the cardiovascular system. In addition, Abca5(-)(/)(-) mice also exhibited exophthalmos and collapse of the thyroid gland. Therefore, ABCA5 is a protein related to a lysosomal disease and plays important roles, especially in cardiomyocytes and follicular cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087723PMC
http://dx.doi.org/10.1128/MCB.25.10.4138-4149.2005DOI Listing

Publication Analysis

Top Keywords

abc transporter
8
revealed mabca5
8
brain lung
8
thyroid gland
8
abca5-/- mice
8
mice exhibited
8
abca5
4
abca5 resides
4
resides lysosomes
4
lysosomes abca5
4

Similar Publications

ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis.

J Zhejiang Univ Sci B

October 2024

Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation.

View Article and Find Full Text PDF

Monocytes are critical in controlling tissue infections and inflammation. Monocyte dysfunction contributes to the inflammatory pathogenesis of cystic fibrosis (CF) caused by CF transmembrane conductance regulator (CFTR) mutations, making CF a clinically relevant disease model for studying the contribution of monocytes to inflammation. Although CF monocytes exhibited adhesion defects, the precise mechanism is unclear.

View Article and Find Full Text PDF

We report the synthesis of a series of detergents with a lactobionamide polar head group and a tail containing four to seven perfluorinated carbon atoms. Critical micellar concentrations (CMCs) were determined using isothermal titration calorimetry (ITC) and surface tension (SFT) measurements, showing a progressive decrease from 27 mM to about 0.2 mM across the series.

View Article and Find Full Text PDF

Combined transcriptome and whole genome sequencing analyses reveal candidate drug-resistance genes of .

iScience

January 2025

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China.

Avian coccidiosis is a widespread intestinal disease found in poultry that causes substantial economic losses. To extensively investigate the molecular mechanism of drug resistance in , we analyzed the sporozoites and second-generation merozoites of drug-sensitive (DS), diclazuril-resistant (DZR) strain, and salinomycin-resistant (SMR) strains of through transcriptome sequencing. Whole genome sequencing analyses were performed on resistant strains at different concentrations-11 sensitive strains, 16 field diclazuril-resistant strains, and 15 field salinomycin-resistant strains of .

View Article and Find Full Text PDF

MiRNAs: main players of cancer drug resistance target ABC transporters.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!