Synthesis and conformational properties of phosphopeptides related to the human tau protein.

Regul Pept

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China.

Published: August 2005

AI Article Synopsis

  • In Alzheimer's patients, tau protein loses its normal structure and forms abnormal aggregates, contributing to disease progression.
  • Researchers synthesized specific tau protein peptides to examine how abnormal phosphorylation changes their structure.
  • The study found that phosphorylation alters the charge and conformation of tau, hinting that these changes could affect tau's interaction with microtubules and may play a role in Alzheimer's pathology.

Article Abstract

In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to determine the effects of abnormal phosphorylation on the local structure. A series of peptides corresponding to isolated regions of tau protein have been successfully synthesized using Fmoc-based chemistry and their conformations were determined by 1H NMR spectroscopy and circular dichroism (CD) spectroscopy. Immunodominant peptides corresponding to tau-(256-273), tau-(350-367) and two phosphorylated derivatives in which a single Ser was phosphorylated at positions 262 and 356, respectively, were the main focus of the study. A direct alteration of the local structure after phosphorylation constitutes a new strategy through which control of biological activity can be enforced. In our study on Ser262 in R1 peptide and Ser356 in R4 peptide, phosphorylation modifies both the negative charge and the local conformation nearby the phosphorylation sites. Together, these structural changes indicate that phosphorylation may act as a conformational switch in the binding domain of tau protein to alter specificity and affinity of binding to microtubule, particularly in response to the abnormal phosphorylation events associated with Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.regpep.2005.03.003DOI Listing

Publication Analysis

Top Keywords

tau protein
16
alzheimer's disease
8
abnormal phosphorylation
8
local structure
8
peptides corresponding
8
phosphorylation
6
synthesis conformational
4
conformational properties
4
properties phosphopeptides
4
phosphopeptides human
4

Similar Publications

Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment.

View Article and Find Full Text PDF

Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons.

View Article and Find Full Text PDF

Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function.

Neoplasia

December 2024

Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.

View Article and Find Full Text PDF

Mechanisms of Neurosyphilis-Induced Dementia: Insights into Pathophysiology.

Neurol Int

December 2024

Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Miami Miller, Miami, FL 33136, USA.

Neurosyphilis-induced dementia represents a severe manifestation of tertiary syphilis, characterized by cognitive and neuropsychiatric impairments. This condition arises from the progression of syphilis to the central nervous system, where the spirochete causes damage through invasion, chronic inflammation, and neurodegeneration. The pathophysiology involves chronic inflammatory responses, direct bacterial damage, and proteinopathies.

View Article and Find Full Text PDF

SUMO2 rescues neuronal and glial cells from the toxicity of P301L Tau mutant.

Front Cell Neurosci

December 2024

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!