TBT toxicity on a natural planktonic assemblage exposed to enhanced ultraviolet-B radiation.

Aquat Toxicol

Institut des Sciences de la Mer de Rimouski (ISMER), Université du Québec à Rimouski, 310, Allée des Ursulines, Rimouski, Que., Canada G5L 3A1.

Published: July 2005

A microcosm approach was designed to study the combined effects of tributyltin (TBT) from antifouling paints and ultraviolet-B radiation (UVBR: 280-320 nm), on a natural planktonic assemblage (<150 microm) isolated from the St. Lawrence Estuary at the end of the springtime. Microcosms (9l, cylindrical Teflon bags, 75 cm heightx25 cm width) were immersed in the water column of mesocosms (1800 l, polyethylene bags, 2.3 m depth) and exposed to two different UVBR regimes: natural ambient UVBR (NUVBR), and enhanced level of UVBR (HUVBR). During consecutive 5 days, effects of TBT (120 ng l -1) and enhanced UVBR (giving a biologically weighted UVBR 2.15-fold higher than natural light condition) were monitored in the samples coming from following treatments: (i) NUVBR light condition without TBT (NUVBR), (ii) NUVBR light condition with TBT-added (NUVBR+TBT), (iii) HUVBR light condition without TBT (HUVBR) and (iv) HUVBR light condition with TBT-added (HUVBR+TBT). Each treatment was conducted in triplicate microcosms. Different parameters were then measured during 5 days, including TBT analysis, bacterial abundance and productivity, phytoplankton abundance, cellular characteristics and growth rates, as well as in vivo chlorophyll a (Chl a) fluorescence. Following TBT addition (NUVBR+TBT treatment), Chl a concentrations never exceeded 1 microg l-1 whereas final values as high as 54 microg l-1 were observed in TBT-free treatments (NUVBR and HUVBR). TBT addition resulted also in the lost of fluorescence signal of the maximum efficiency of the photosystem II in phytoplankton assemblage. TBT toxicity caused on phytoplankton <20 microm an increase of mean cell size and changes in shape reflected a drastic disturbance of the cell cycle leading to an inhibition of the apparent growth rate. These negative effects of TBT resulted in a final abundance of phytoplankton <20 microm of 591+/-35 cells ml-1 in NUVBR+TBT relative to NUVBR treatment (i.e., 31,846+/-312 cells ml-1). Moreover, when cells were submitted to TBT under enhanced UVBR (HUVBR+TBT treatment), final abundance of phytoplankton <20 microm was only 182+/-90 cells ml-1, with a significant interaction between TBT and UVBR during the last 2 days of the experiment. The same type of interaction was also observed for bacterial abundance in NUVBR+TBT and HUVBR+TBT with stimulation of 226 and of 403%, respectively due to TBT addition relative to NUVBR treatment. When considering bacterial productivity, TBT addition resulted in an inhibition of 32%, and this inhibition was significantly more pronounced under dual stresses (i.e., 77% in HUVBR+TBT). These results clearly demonstrate that the combination of TBT and UVBR stresses have synergistic effects affecting the first trophic levels of the marine food web.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2005.03.019DOI Listing

Publication Analysis

Top Keywords

natural planktonic
8
planktonic assemblage
8
ultraviolet-b radiation
8
tbt toxicity
4
toxicity natural
4
assemblage exposed
4
exposed enhanced
4
enhanced ultraviolet-b
4
radiation microcosm
4
microcosm approach
4

Similar Publications

Grazing by zooplankton can regulate bloom-forming cyanobacteria but can also transfer toxin-producing cells, as well as toxic metabolites, to the food web. While laboratory investigations have provided extensive knowledge on zooplankton and toxic cyanobacteria interactions, information on zooplankton feeding on toxin-producing cyanobacteria in natural water bodies remains scarce. In this study, we quantified -specific synthase genes from the gut contents of various cladoceran and copepod taxa to assess the in situ crustacean community and taxon-specific ingestion of potentially toxic in Lake Peipsi, a large eutrophic lake in Estonia, Northern Europe.

View Article and Find Full Text PDF

is an important source of natural β-carotene (containing and isomers) for industrial production. The phytohormone salicylic acid (SA) has been proven to have impacts on the stress resistance of higher plants, but research on microalgae is currently unclear. In this study, the effects of SA on the growth, biochemical composition, antioxidant enzyme activity, key enzymes of β-carotene synthesis, and cis-and trans-isomers of β-carotene in under different salt concentrations were investigated.

View Article and Find Full Text PDF

Stay Connected to Be Diverse!

Glob Chang Biol

January 2025

Aquatic Ecology, Department Biology, Ludwig-Maximilians - University Munich, München, Germany.

Plankton biodiversity is crucial for the functioning of aquatic ecosystems, influencing nutrient cycling, food web dynamics, and carbon storage. Global change and habitat destruction disrupt these ecosystems, reducing species diversity and ecosystem resilience. Connectivity between aquatic habitats supports biodiversity by enabling species migration, genetic diversity, and recovery from disturbances.

View Article and Find Full Text PDF

The synergistic antibacterial effects of allicin nanoemulsion and ε-polylysine against Escherichia coli in both planktonic and biofilm forms.

Food Chem

January 2025

School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China. Electronic address:

The synergistic effects of allicin nanoemulsion (AcN) and ε-polylysine (ε-PL) against Escherichia coli were investigated in this study. The combination of AcN and ε-PL synergistically inhibited the planktonic growth of E. coli, with a low fractional inhibitory concentration index of 0.

View Article and Find Full Text PDF

Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!