Attraction to sexual pheromones and associated odorants in female mice involves activation of the reward system and basolateral amygdala.

Eur J Neurosci

Department of Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C. Dr Moliner, 50, 46100 Burjassot, València, Spain.

Published: April 2005

Adult female mice are innately attracted to non-volatile pheromones contained in male-soiled bedding. In contrast, male-derived volatiles become attractive if associated with non-volatile attractive pheromones, which act as unconditioned stimulus in a case of Pavlovian associative learning. In this work, we study the chemoinvestigatory behaviour of female mice towards volatile and non-volatile chemicals contained in male-soiled bedding, in combination with the analysis of c-fos expression induced by such a behaviour to clarify: (i) which chemosensory systems are involved in the detection of the primary attractive non-volatile pheromone and of the secondarily attractive volatiles; (ii) where in the brain male-derived non-volatile and volatile stimuli are associated to induce conditioned attraction for the latter; and (iii) whether investigation of these stimuli activates the cerebral reward system (mesocorticolimbic system including the prefrontal cortex and amygdala), which would support the view that sexual pheromones are reinforcing. The results indicate that non-volatile pheromones stimulate the vomeronasal system, whereas air-borne volatiles activate only the olfactory system. Thus, the acquired preference for male-derived volatiles reveals an olfactory-vomeronasal associative learning. Moreover, the reward system is differentially activated by the primary pheromones and secondarily attractive odorants. Exploring the primary attractive pheromone activates the basolateral amygdala and the shell of nucleus accumbens but neither the ventral tegmental area nor the orbitofrontal cortex. In contrast, exploring the secondarily attractive male-derived odorants involves activation of a circuit that includes the basolateral amygdala, prefrontal cortex and ventral tegmental area. Therefore, the basolateral amygdala stands out as the key centre for vomeronasal-olfactory associative learning.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2005.04036.xDOI Listing

Publication Analysis

Top Keywords

basolateral amygdala
16
female mice
12
reward system
12
associative learning
12
secondarily attractive
12
sexual pheromones
8
involves activation
8
non-volatile pheromones
8
contained male-soiled
8
male-soiled bedding
8

Similar Publications

In response to stressors, individuals manifest varied behavioral responses directed toward satisfying physiological survival needs. Although the enduring effects of adolescent stress on both humans and animals are well-documented, the underlying mechanisms remain insufficiently elucidated. Utilizing immunofluorescence, viral injections, and brain slice electrophysiological recordings, we have delineated that heightened excitability among glutamatergic neurons in the basolateral amygdala (BLA) is responsible for inducing heightened exploratory behaviors in adolescent mice subjected to mild, chronic restraint stress.

View Article and Find Full Text PDF

Background: An excess of exosomes, nanovesicles released from all cells and key regulators of brain plasticity, is an emerging therapeutic target for stress-related mental illnesses. The effects of chronic stress on exosome levels are unknown; even less is known about molecular drivers of exosome levels in the stress response.

Methods: We used our state-of-the-art protocol with 2 complementary strategies to isolate neuronal exosomes from plasma, ventral dentate gyrus, basolateral amygdala, and olfactory bulbs of male mice to determine the effects of chronic restraint stress (CRS) on exosome levels.

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202511000-00029/figure1/v/2024-12-20T164640Z/r/image-tiff Neuronal activity, synaptic transmission, and molecular changes in the basolateral amygdala play critical roles in fear memory. Cylindromatosis (CYLD) is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.

View Article and Find Full Text PDF

Rationale: The positive reinforcing effects of alcohol (ethanol) drive repetitive use and contribute to alcohol use disorder (AUD). Ethanol alters the expression of glutamate AMPA receptor (AMPAR) subunits in reward-related brain regions, but the extent to which this effect regulates ethanol's reinforcing properties is unclear.

Objective: This study investigates whether ethanol self-administration changes AMPAR subunit expression and synaptic activity in the nucleus accumbens core (AcbC) to regulate ethanol's reinforcing effects in male C57BL/6 J mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!