Needle biopsies were taken from triceps brachii of 6 healthy males before and after a 6 month intensive weight training programme. The tissue was sectioned, photographed under a Philips EM200 and subjected to stereological analysis. Cross sectional fibre areas were also calculated from cryostat sections stained for ATPase activity. Morphometric analysis indicated that training resulted in a significant 26% reduction in mitochondrial volume density and a 25% reduction in the mitochondrial volume to myofibrillar volume ratio. These changes were accompanied by significant increases in fibre area for both FT (33%) and ST (27%) fibres as determined from the light microscope. There was a significant correlation between the reduction in mitochondrial volume density and the increase in FT fibre area following training (r=0.845). It was concluded that heavy resistance training leads to a dilution of the mitochondrial volume density through an increase in myofibrillar size with hypertrophy.
Download full-text PDF |
Source |
---|
Crit Care
January 2025
Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
Background: Both quantitative and qualitative aspects of muscle status significantly impact clinical outcomes in critically ill patients. Comprehensive monitoring of baseline muscle status and its changes is crucial for risk stratification and management optimization. However, repeatable and accessible indicators are lacking.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Basic Medicine, Guilin Medical University, Guilin, 541199, P.R. China.
Background: Gyrodactylus von Nordmann, 1832, a genus of viviparous parasites within the family Gyrodactylidae, contains one of the largest nominal species in the world. Gyrodactylus pseudorasborae Ondračková, Seifertová & Tkachenko, 2023 widely distributed in Europe and China, although its mitochondrial genome remains unclear. This study aims to sequence the mitogenome of G.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China. Electronic address:
An imbalance in iron homeostasis contributes to mitochondrial dysfunction, which is closely linked to the pathogenesis of various diseases. Herein, we developed a nanosensor for detecting mitochondrial ferrous ions in vitro and in vivo. A poly(N-isopropylacrylamine)-coacrylic acid nanohydrogel was synthesized, and ferrous ions were detected using the fluorescent probe FeRhonox-1 embedded within it.
View Article and Find Full Text PDFPart Fibre Toxicol
January 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.
Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.
View Article and Find Full Text PDFJ Med Chem
January 2025
Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
Positron emission tomography (PET) is a common imaging technique and can provide accurate information about the size, shape, and location of tumors. Recent evidence has shown that G-quadruplex structures (G4s) are identified in human oncogenes, and these special structures are recognized as diagnostic cancer markers and drug targets for anticancer therapies. Although a number of techniques for in vivo imaging of G4s have been developed, achieving sufficient sensitivity and selectivity in vivo remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!