Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-4731(79)90026-8DOI Listing

Publication Analysis

Top Keywords

human testicular
4
testicular secretion
4
secretion increasing
4
increasing age
4
human
1
secretion
1
increasing
1
age
1

Similar Publications

Generation, establishment and characterization of three pluripotent stem cell lines (CVTTHi002-A, CVTTHi003-A and CVTTHi004-A) from primary testicular somatic cells isolated from two prepuberal and one peripuberal Klinefelter Syndrome (47 XXY) patients.

Stem Cell Res

January 2025

Cell Therapy, Stem Cells and Tissues Group, Biobizkaia Health Research Institute Barakaldo, Spain; Advanced Therapies Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain; Red Española de Terapias Avanzadas (TERAV), Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS RD21/0017/0024, RD24/0014/0025), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. Electronic address:

Klinefelter Syndrome (KS) is an aneuploid genetic condition in males characterized by at least one additional copy of the X chromosome. Due to fibrotic degeneration of the testis, these patients suffer infertility in the future. The pathogenic mechanism by which this occurs is still not well known.

View Article and Find Full Text PDF

Even though Leydig cell tumor (LCT) represents the most common neoplasia among testicular sex cord-stromal tumors (SCSTs), it is a rare condition, comprising 1-2% of all testicular tumors, with a 10% risk of malignancy most commonly located in retroperitoneal lymph nodes. LCTs may demonstrate various clinical manifestations - from asymptomatic intratesticular swelling through nonspecific symptoms such as loss of libido, impotence or infertility, up to feminizing or virilizing syndromes due to hormonal activity of the tumor. This article presents a case of Leydig cell tumor that was associated with azoospermia what have rarely been reported worldwide.

View Article and Find Full Text PDF

Introduction: Getah virus (GETV) is a zoonotic virus transmitted via a mosquito-vertebrate cycle. While previous studies have explored the epidemiology and pathogenicity of GETV in various species, its molecular mechanisms remain largely unexplored.

Methods: This study investigated the impact of GETV infection and associated molecular mechanisms on reactive oxygen species (ROS) and autophagy levels in mouse Leydig cells both and .

View Article and Find Full Text PDF

The action of retinoic acid on spermatogonia in the testis.

Curr Top Dev Biol

January 2025

School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:

For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.

View Article and Find Full Text PDF

Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!