Objective: We propose that the fetal heart is highly resilient to hypoxic stress. Our objective was to elucidate the human fetal gene expression profile in response to simulated ischemia and reperfusion to identify molecular targets that account for the innate cardioprotection exhibited by the fetal phenotype.
Methods: Primary cultures of human fetal cardiac myocytes (gestational age, 15-20 weeks) were exposed to simulated ischemia and reperfusion in vitro by using a simulated ischemic buffer under anoxic conditions. Total RNA from treated and baseline cells were isolated, reverse transcribed, and labeled with Cy3 or Cy5 and hybridized to a human cDNA microarray for expression analysis. This analysis revealed a highly significant (false discovery rate, <3%) suppression of interleukin 6 transcript levels during the reperfusion phase confirmed by means of quantitative polymerase chain reaction (0.25 +/- 0.11-fold). Interleukin 6 signaling during ischemia and reperfusion was assessed at the protein expression level by means of Western measurements of interleukin 6 receptor, the signaling subunit of the interleukin 6 receptor complex (gp130), and signal transducer of activated transcription 3. Posttranslational changes in the protein kinase B signaling pathway were determined on the basis of the phosphorylation status of protein kinase B, mitogen-activated protein kinase, and glycogen synthase kinase 3beta. The effect of suppression of a prohypertrophic kinase, integrin-linked kinase, with short-interfering RNA was determined in an ischemia and reperfusion-stressed neonatal rat cardiac myocyte model. Endogenous secretion of interleukin 6 protein in culture supernatants was measured by enzyme-linked immunosorbent assay.
Results: Human fetal cardiac myocytes exhibited a significantly lower rate of apoptosis induction during ischemia and reperfusion and after exposure to staurosporine and recombinant interleukin 6 compared with that observed in neonatal rat cardiac myocytes ( P < .05 for all comparisons, analysis of variance). Exposure to exogenously added recombinant interleukin 6 increased the apoptotic rate in both rat and human fetal cardiac myocytes ( P < .05). Short-interfering RNA-mediated suppression of integrin-linked kinase, a prohypertrophy upstream kinase regulating protein kinase B and glycogen synthase kinase 3beta phosphorylation, was cytoprotective against ischemia and reperfusion-induced apoptosis in neonatal rat cardiac myocytes ( P < .05).
Conclusions: Human fetal cardiac myocytes exhibit a uniquely adaptive transcriptional response to ischemia and reperfusion that is associated with an apoptosis-resistant phenotype. The stress-inducible fetal cardiac myocyte gene repertoire is a useful platform for identification of targets relevant to the mitigation of cardiac ischemic injury and highlights a novel avenue involving interleukin 6 modulation for preventing the cardiac myocyte injury associated with ischemia and reperfusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328676 | PMC |
http://dx.doi.org/10.1016/j.jtcvs.2004.11.055 | DOI Listing |
Regen Med
January 2025
Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.
View Article and Find Full Text PDFHum Cell
January 2025
Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications.
View Article and Find Full Text PDFPediatr Res
January 2025
Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA.
Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Of note, prenatal Zika infection can cause a spectrum of neurodevelopmental disorders, including congenital Zika syndrome.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
Early missed abortion is defined as a pregnancy of ≤ 12 weeks in which there is a cessation of life in the developing embryo or fetus, leading to its retention within the uterine cavity without being spontaneously expelled promptly. This condition is commonly observed and significantly impacts human reproductive health. This study aimed to identify key genes related to ferroptosis that could serve as novel biomarkers for early missed abortion.
View Article and Find Full Text PDFSouth Med J
January 2025
Department of Obstetrics and Gynecology, East Tennessee State University, Johnson City.
Objectives: In this study, buprenorphine was the primary source of maternal opioid exposure at the time of initial prenatal evaluation. Current recommendations advise that level II ultrasounds be performed in patients with substance use disorders. For some patients, distance, transportation, and costs associated with obtaining ultrasounds from a specialist pose significant barriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!