Degradation of beta-lactam antibiotics by means of metallic cations seems to have a very complex chemistry, involving not only the catalytic effect of the metal ion but also complex formation. Many different compounds, such as methylpyrazines, oxazolones, penicilloic, penicillenic, and penicillonic acids, have been reported as degradation products of such antibiotics, although not many details about the progress of the reaction can be found in the literature. Two novel fluorimetric and spectrophotometric methods previously published by the authors, as well as kinetic studies, have been used to propose a possible reaction mechanism for the ampicillin degradation in the presence of copper(II) ions. Likewise, we have proposed the chemical structure required by the beta-lactam antibiotics to develop absorption or fluorescence properties. Kinetics in micellar and aqueous media shows that the copper-ampicillin reaction proceeds through different pathways depending on the reaction medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2005.02.021 | DOI Listing |
Tuberculosis (TB) is historically the world's deadliest infectious disease. New TB drugs that can avoid pre-existing resistance are desperately needed. The β-lactams are the oldest and most widely used class of antibiotics to treat bacterial infections but, for a variety of reasons, they were largely ignored until recently as a potential treatment option for TB.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Introduction: Patients with suspected bacterial infection frequently receive empiric, broad-spectrum antibiotics prior to pathogen identification due to the time required for bacteria to grow in culture. Direct-from-blood diagnostics identifying the presence or absence of bacteria and/or resistance genes from whole blood samples within hours of collection could enable earlier antibiotic optimisation for patients suspected to have bacterial infections. However, few randomised trials have evaluated the effect of using direct-from-blood bacterial testing on antibiotic administration and clinical outcomes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Biomaterials Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan. Electronic address:
The global rise of bacterial resistance demands innovative strategies to enhance antibiotic efficacy. This study investigates keratin nanoparticles (KNPs) derived from waste chicken feathers as sustainable drug carriers. Antibacterial activity of KNPs was evaluated against Staphylococcus aureus and Escherichia coli using antibacterial sensitivity assays, including disc diffusion and minimum inhibitory concentration tests, while cytotoxicity was evaluated on human lymphoma cells.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Innovation Center Laboratory for Traditional Chinese Veterinary Medicine (TCVM), College of Veterinary Medicine, China Agricultural University, Beijing, China.
To address the severe problem of methicillin-resistant Staphylococcus aureus (MRSA) resistance, this study identified a single component from traditional Chinese medicine that, when used in combination with existing antibiotics, enhances the therapeutic efficacy of the antimicrobial drugs. Using the micro broth dilution method and the checkerboard dilution method, susceptibility tests were conducted on ten commonly used β-lactam antibiotics against eleven strains of MRSA. It was found that cefquinome sulfate exhibits synergistic activity with PROs.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
Verona-integron-metallo-β-lactamase (VIM-2) is one of the most widespread class B β-lactamase responsible for β-lactam resistance. Although active-site residues help in metal binding, the residues nearing the active-site possess functional importance. Here, to decipher the role of such residues in the activity and stability of VIM-2, the residues E146, D182, N210, S207, and D213 were selected through in-silico analyses and substituted with alanine using site-directed mutagenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!