Pseudomonas putida and Pseudomonas fluorescens present as a coculture were studied for their abilities to degrade benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) under various growth conditions. The coculture effectively degraded various concentrations of BTEX as sole carbon sources. However, all BTEX compounds showed substrate inhibition to the bacteria, in terms of specific growth, degradation rate, and cell net yield. Cell growth was completely inhibited at 500 mg l(-1) of benzene, 600 mg l(-1) of o-xylene, and 1000 mg l(-1) of toluene. Without aeration, aerobic biodegradation of BTEX required additional oxygen provided as hydrogen peroxide in the medium. Under hypoxic conditions, however, nitrate could be used as an alternative electron acceptor for BTEX biodegradation when oxygen was limited and denitrification took place in the culture. The carbon mass balance study confirmed that benzene and toluene were completely mineralized to CO2 and H2O without producing any identifiable intermediate metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10532-004-1842-6DOI Listing

Publication Analysis

Top Keywords

btex biodegradation
8
pseudomonas putida
8
putida pseudomonas
8
pseudomonas fluorescens
8
hypoxic conditions
8
benzene toluene
8
btex
5
kinetics btex
4
biodegradation coculture
4
pseudomonas
4

Similar Publications

Active phytoextraction of toluene shifts the microbiome and enhances degradation capacity in hybrid poplar.

J Environ Manage

December 2024

School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON, N1H 2W1, Canada. Electronic address:

Hybrid poplars are widely recognized for their effectiveness in remediating subsurface aromatic hydrocarbon contaminants, including benzene, toluene, ethylbenzene, and xylene isomers (BTEX). While BTEX compounds are frequently found in the transpiration streams of poplars at contaminated sites, the microbial dynamics within these trees, particularly in response to hydrocarbon exposure, remain underexplored. This study utilized high-throughput amplicon sequencing to investigate the trunk microbiome in hybrid poplars at a field-scale toluene phytoremediation site.

View Article and Find Full Text PDF

Co-occurrence of PFASs, TPHs, and BTEX in subsurface soils: Impacts on native microbial communities and implications for bioremediation.

Environ Res

December 2024

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

This study investigates the co-occurrence of per- and polyfluoroalkyl substances (PFASs), petroleum hydrocarbons (TPHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) and their effects on the indigenous microbial communities in soils at a contaminated site with a history of petroleum refinery operations. PFASs concentrations were in the range of 5.65-6.

View Article and Find Full Text PDF
Article Synopsis
  • Benzene, toluene, ethylbenzene, and xylene (BTEX) are hazardous compounds found in marine waters, primarily due to oil spills and industrial effluents, necessitating effective bioremediation methods in saline environments.
  • The study evaluated the halotolerance of Aspergillus niger by gradually increasing salinity to 30‰, revealing optimal growth at 25‰ with significant biomass production.
  • Batch reactor experiments showed that the adapted Aspergillus niger could efficiently degrade BTEX compounds, achieving nearly complete removal in 7 days, with benzene being the most effectively adsorbed compound on the fungal biomass.
View Article and Find Full Text PDF

Nutrient amendments enrich microbial hydrocarbon degradation metagenomic potential in freshwater coastal wetland microcosm experiments.

Appl Environ Microbiol

December 2024

Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA.

Unlabelled: Biostimulating native microbes with fertilizers has proven to be a highly effective strategy to speed up biodegradation rates in microbial communities. This study investigates the genetic potential of microbes to degrade light synthetic crude oil in a freshwater coastal wetland. Experimental sediment microcosms were exposed to a variety of conditions (biological control, a light synthetic crude oil amendment, and light synthetic crude oil with nutrient amendment) and incubated for 30 days before volatile organic compounds (BTEX) were quantified and DNA was sequenced for metagenomic analysis.

View Article and Find Full Text PDF

Disentangling the microbial genomic traits associated with aromatic hydrocarbon degradation in a jet fuel-contaminated aquifer.

Biodegradation

November 2024

Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Av. Alexandre Cazellato, 999, Paulínia, SP, 13148-218, Brazil.

Spills of petroleum or its derivatives in the environment lead to an enrichment of microorganisms able to degrade such compounds. The interactions taking place in such microbial communities are complex and poorly understood, since they depend on multiple factors, including diversity and metabolic potential of the microorganisms and a broad range of fluctuating environmental conditions. In our previous study, a complete characterization, based on high-throughput sequencing, was performed in a jet-fuel plume using soil samples and in in-situ microcosms amended with hydrocarbons and exposed for 120 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!