Pseudomonas putida and Pseudomonas fluorescens present as a coculture were studied for their abilities to degrade benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) under various growth conditions. The coculture effectively degraded various concentrations of BTEX as sole carbon sources. However, all BTEX compounds showed substrate inhibition to the bacteria, in terms of specific growth, degradation rate, and cell net yield. Cell growth was completely inhibited at 500 mg l(-1) of benzene, 600 mg l(-1) of o-xylene, and 1000 mg l(-1) of toluene. Without aeration, aerobic biodegradation of BTEX required additional oxygen provided as hydrogen peroxide in the medium. Under hypoxic conditions, however, nitrate could be used as an alternative electron acceptor for BTEX biodegradation when oxygen was limited and denitrification took place in the culture. The carbon mass balance study confirmed that benzene and toluene were completely mineralized to CO2 and H2O without producing any identifiable intermediate metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10532-004-1842-6 | DOI Listing |
J Environ Manage
December 2024
School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON, N1H 2W1, Canada. Electronic address:
Hybrid poplars are widely recognized for their effectiveness in remediating subsurface aromatic hydrocarbon contaminants, including benzene, toluene, ethylbenzene, and xylene isomers (BTEX). While BTEX compounds are frequently found in the transpiration streams of poplars at contaminated sites, the microbial dynamics within these trees, particularly in response to hydrocarbon exposure, remain underexplored. This study utilized high-throughput amplicon sequencing to investigate the trunk microbiome in hybrid poplars at a field-scale toluene phytoremediation site.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
This study investigates the co-occurrence of per- and polyfluoroalkyl substances (PFASs), petroleum hydrocarbons (TPHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) and their effects on the indigenous microbial communities in soils at a contaminated site with a history of petroleum refinery operations. PFASs concentrations were in the range of 5.65-6.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
CEB - Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.
Appl Environ Microbiol
December 2024
Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA.
Unlabelled: Biostimulating native microbes with fertilizers has proven to be a highly effective strategy to speed up biodegradation rates in microbial communities. This study investigates the genetic potential of microbes to degrade light synthetic crude oil in a freshwater coastal wetland. Experimental sediment microcosms were exposed to a variety of conditions (biological control, a light synthetic crude oil amendment, and light synthetic crude oil with nutrient amendment) and incubated for 30 days before volatile organic compounds (BTEX) were quantified and DNA was sequenced for metagenomic analysis.
View Article and Find Full Text PDFBiodegradation
November 2024
Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Av. Alexandre Cazellato, 999, Paulínia, SP, 13148-218, Brazil.
Spills of petroleum or its derivatives in the environment lead to an enrichment of microorganisms able to degrade such compounds. The interactions taking place in such microbial communities are complex and poorly understood, since they depend on multiple factors, including diversity and metabolic potential of the microorganisms and a broad range of fluctuating environmental conditions. In our previous study, a complete characterization, based on high-throughput sequencing, was performed in a jet-fuel plume using soil samples and in in-situ microcosms amended with hydrocarbons and exposed for 120 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!