A PCR-based screening method was used to study the genetic variations of the pgm locus among natural isolates of Yersinia pestis from China. Our results indicate that genetic variations in the pgm locus are well correlated with biovars of Y. pestis and plague foci, suggesting that the pgm locus plays a role in Y. pestis adaptation to its environment. The gene encoding two-component regulatory system sensor kinase became a pseudogene in all strains of biovar Orientalis due to a thymidine deletion, while it is intact in all the strains of the other biovars. Only strains from Foci H and L are the same as Yersinia pseudotuberculosis in that they have an intact transmembrane helix in the sensor kinase protein, which is lost in all the other strains because of the 18 bp in-frame deletion. The IS100 element that flanks the 39 terminus of the pgm locus was inserted into the chromosome during the within-species microevolution of Y. pestis, which is absent in strains from Foci G, H and L and also in Y. pseudotuberculosis. This fact indicates that the strains from these three foci are of an older lineage of Chinese Y. pestis. It is this IS100 element's absence that maintained high stability of the pgm locus in the Y. pestis strains from these three foci. The IS285 element insertion in the pigmentation segment and the IS100 element insertion in the downstream flanking region of the pgm locus are only present in strains from Foci H and L. The flanking region outside the 59 terminus of the upstream IS100 element is identical in the strains from these two foci, which is different in the other strains. All of these unique characteristics suggest that they are of a special lineage of Chinese Y. pestis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2323/jgam.51.11 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!