The adsorption characteristics of eight adsorbents, cholestyramine, colestimide, aluminum silicate, sucralfate, aluminum hydroxide, calcium polystyrene sulfonate, carbon sphere and medicinal carbon, on the drugs such as methotrexate, antidepressants, mizoribine and ciprofloxacin hydrochloride were investigated in vitro. Medicinal carbon showed an excellent adsorption of all the tested drugs while the carbon spheres showed a high but slow adsorption characteristic. Cholestyramine and colestimide showed a higher adsorption in methotrexate than the other adsorbents. Aluminum silicate and calcium polystyrene sulfonate showed higher adsorption in four antidepressants, clomipramine hydrochloride, imipramine hydrochloride, mianserin hydrochloride and trazodone hydrochloride. In mizoribine, there were no adsorbents that showed higher adsorption except for the medicinal carbon. In ciprofloxacin hydrochloride, aluminum preparations and calcium polystyrene sulfonate showed higher adsorption characteristics. It is suggested that several adsorbents are potentially useful treatments for drug overdoses, but that these adsorbents have the possibility of decreasing the effects of the co-administered medicines.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.28.841DOI Listing

Publication Analysis

Top Keywords

higher adsorption
16
adsorption characteristics
12
calcium polystyrene
12
polystyrene sulfonate
12
medicinal carbon
12
adsorption
8
cholestyramine colestimide
8
aluminum silicate
8
ciprofloxacin hydrochloride
8
sulfonate higher
8

Similar Publications

High-temperature calcination modified red clay as an efficient adsorbent for phosphate removal from water.

Environ Res

December 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.

To develop an efficient and cost-effective adsorbent for phosphate removal from water bodies, this study utilized natural red clay (RC) as a carrier. The modified red clay (MRC) was prepared through three methods: acid modification, high-temperature calcination, and metal loading. The preparation conditions were optimized, and the adsorption effects on phosphate were compared across these different modifications.

View Article and Find Full Text PDF

Removal of phthalate esters by integrated adsorption and biodegradation using improved performance of lipase@MOFs.

Environ Pollut

December 2024

Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:

Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.

View Article and Find Full Text PDF

In Situ Growth of Covalent Organic Frameworks on Carbon Nanotubes for High-Performance Potassium-Ion Batteries.

Angew Chem Int Ed Engl

December 2024

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.

View Article and Find Full Text PDF

Blue light will be a promising alternative for photodynamic therapy in psoriasis, but the photosensitizer in vivo remains unexplored. Mesoporous zinc phosphate microparticle (MZP) was synthesized successfully in this study, as evidenced by XPS, XRD, and nitrogen adsorption experiments. Its psoriatic skin-sensitive property was corroborated by SEM and the higher cumulative release rate of that impregnated with curcumin (Cur) and glycyrrhizic acid (GA), namely Cur-GA-MZP, at pH 5.

View Article and Find Full Text PDF

In this study, a novel adsorbent called Ca@SP was developed by immobilizing microalgae protein (Spirulina platensis, SP) in an alginate matrix for enhanced Pb²⁺ removal from aqueous solutions. Synthesized via in situ crosslinking, Ca@SP leverages the synergistic effects of alginate's gel-forming ability and SP's N-rich biomass. Characterization of Ca@SP revealed a green spherical hydrogel with a BET specific surface area of 159.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!