An in situ perfusion protocol of rat epididymal adipose tissue useful in metabolic studies.

J Lipid Res

Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, E-08071 Barcelona, Spain.

Published: August 2005

Experimental approaches involving the perfusion of tissues and organs offer the advantage of improved physiological relevance over the use of isolated tissues or cells while at the same time being much more controlled and tissue-specific than studies in vivo. Nevertheless, there have been few metabolic studies performed in perfused white adipose tissue, largely because of the difficulty of the surgical technique involved. Although some methods have been described, they are difficult to use as perfusion protocols and their reproducibility is poor. We have modified a rat perfusion method, based on a modification of the Ho and Meng technique, for use with epididymal white adipose tissue (eWAT), and we present it here as a protocol to be reproduced. We also offer surgical solutions for the most common variants of vessel distributions in rats. Using the protocol described here, the perfused adipose tissue is viable and metabolically active, as indicated by the maintenance of tissue ATP levels and adiponectin secretion and by endogenous lipolysis regulation. Moreover, there is a high level of lipoprotein lipase activity in the endothelium of the tissue, which is heparin-releasable. Thus, this method is a useful and reproducible tool that allows the perfusion of eWAT for use in metabolic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.D500016-JLR200DOI Listing

Publication Analysis

Top Keywords

adipose tissue
16
metabolic studies
12
white adipose
8
tissue
6
situ perfusion
4
perfusion protocol
4
protocol rat
4
rat epididymal
4
adipose
4
epididymal adipose
4

Similar Publications

Aim: Sarcopenic obesity (SO) is associated with adverse outcomes in diseased patients. This study aimed to examine the prevalence and risks associated with SO, with a focus on the impact of SO on cardiovascular risk in patients with MASLD.

Materials And Methods: In this cross-sectional study, patients with MASLD were prospectively enrolled.

View Article and Find Full Text PDF

Associations of fat, bone, and muscle indices with disease severity in patients with obstructive sleep apnea hypopnea syndrome.

Sleep Breath

January 2025

Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.

Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.

Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!