Research on environmental effects in genetic studies of aging: comments.

J Gerontol B Psychol Sci Soc Sci

Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.

Published: March 2005

Download full-text PDF

Source
http://dx.doi.org/10.1093/geronb/60.special_issue_1.7DOI Listing

Publication Analysis

Top Keywords

environmental effects
4
effects genetic
4
genetic studies
4
studies aging
4
aging comments
4
environmental
1
genetic
1
studies
1
aging
1
comments
1

Similar Publications

With many species interacting in nature, determining which interactions describe community dynamics is nontrivial. By applying a computational modeling approach to an extensive field survey, we assessed the importance of interactions from plants (both inter- and intra-specific), pollinators and insect herbivores on plant performance (i.e.

View Article and Find Full Text PDF

Dust emissions from open-pit mining pose a significant threat to environmental safety and human health. Currently, the range of dust suppressants used in coal mining is limited, often failing to account for their suitability across various stockpiles. This oversight results in poor infiltration after application, leading to insufficient crust formation and reduced durability.

View Article and Find Full Text PDF

Importance: No large randomized clinical trial has directly compared empagliflozin with dapagliflozin, leaving their comparative effectiveness regarding kidney outcomes unknown.

Objective: To compare kidney outcomes between initiation of empagliflozin vs dapagliflozin in adults with type 2 diabetes who were receiving antihyperglycemic treatment.

Design, Setting, And Participants: This target trial emulation used nationwide, population-based routinely collected Danish health care data to compare initiation of empagliflozin vs dapagliflozin in adults with type 2 diabetes who received antihyperglycemic treatment between June 1, 2014, and October 31, 2020.

View Article and Find Full Text PDF

Land-use changes threaten ecosystems and are a major driver of species loss. Plants may adapt or migrate to resist global change, but this can lag behind rapid anthropogenic changes to the environment. Our data show that natural modulations of the microbiome of grassland plants in response to experimental land-use change in a common garden directly affect plant phenotype and performance, thus increasing plant tolerance.

View Article and Find Full Text PDF

Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!