Organ growth results from the progression of component cells through subsequent phases of proliferation and expansion before reaching maturity. We combined kinematic analysis, flowcytometry, and microarray analysis to characterize cell cycle regulation during the growth process of leaves 1 and 2 of Arabidopsis (Arabidopsis thaliana). Kinematic analysis showed that the epidermis proliferates until day 12; thereafter, cells expand until day 19 when leaves reach maturity. Flowcytometry revealed that endoreduplication occurs from the time cell division rates decline until the end of cell expansion. Analysis of 10 time points with a 6k-cDNA microarray showed that transitions between the growth stages were closely reflected in the mRNA expression data. Subsequent genome-wide microarray analysis on the three main stages allowed us to categorize known cell cycle genes into three major classes: constitutively expressed, proliferative, and inhibitory. Comparison with published expression data obtained from root zones corresponding to similar developmental stages and from synchronized cell cultures supported this categorization and enabled us to identify a high confidence set of 131 proliferation genes. Most of those had an M phase-dependent expression pattern and, in addition to many known cell cycle-related genes, there were at least 90 that were unknown or previously not associated with proliferation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1150392 | PMC |
http://dx.doi.org/10.1104/pp.104.053884 | DOI Listing |
Ann N Y Acad Sci
January 2025
Department of Biology, University of Kentucky, Lexington, Kentucky, USA.
Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals.
View Article and Find Full Text PDFCancer Res
January 2025
First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. Here, we identified MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Molecular Biology Vadi Kampüsü, Istanbul Atlas University, Anadolu Cd., No 40, Kağıthane, Istanbul, 34408, Turkey.
Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.
This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!