Glycogenolysis results in the selective catabolism of individual glycogen granules by glycogen phosphorylase. However, once the carbohydrate portion of the granule is metabolized, the fate of glycogenin, the protein primer of granule formation, is not known. To examine this, male subjects (n = 6) exercised to volitional exhaustion (Exh) on a cycle ergometer at 75% maximal O2 uptake. Muscle biopsies were obtained at rest, 30 min, and Exh (99 +/- 10 min). At rest, total glycogen concentration was 497 +/- 41 and declined to 378 +/- 51 mmol glucosyl units/kg dry wt following 30 min of exercise (P < 0.05). There were no significant changes in proglycogen, macroglycogen, glycogenin activity, or mRNA in this period (P > or = 0.05). Exh resulted in decreases in total glycogen, proglycogen, and macroglycogen as well as glycogenin activity (P < 0.05). These decrements were associated with a 1.9 +/- 0.4-fold increase in glycogenin mRNA over resting values (P < 0.05). Glycogenolysis in the initial exercise period (0-30 min) was not adequate to induce changes in glycogenin; however, later in exercise when concentration and granule number decreased further, decrements in glycogenin activity and increases in glycogenin mRNA were demonstrated. Results show that glycogenin becomes inactivated with glycogen catabolism and that this event coincides with an increase in glycogenin gene expression as exercise and glycogenolysis progress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00275.2005 | DOI Listing |
Sci Rep
December 2024
Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
The highly plastic nature of Alveolar Macrophage (AM) plays a crucial role in the defense against inhaled particulates and pathogens in the lungs. Depending on the signal, AM acquires either the classically activated M1 phenotype or the alternatively activated M2 phenotype. In this study, we investigate the metabolic shift in the activated phases of AM (M1 and M2 phases) by reconstructing context specific Genome-Scale Metabolic (GSM) models.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2023
Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
Pompe disease is an inherited metabolic myopathy caused by deficiency of acid alpha-glucosidase (GAA), resulting in lysosomal glycogen accumulation. Residual GAA enzyme activity affects disease onset and severity, although other factors, including dysregulation of cytoplasmic glycogen metabolism, are suspected to modulate the disease course. In this study, performed in mice and patient biopsies, we found elevated protein levels of enzymes involved in glucose uptake and cytoplasmic glycogen synthesis in skeletal muscle from mice with Pompe disease, including glycogenin (GYG1), glycogen synthase (GYS1), glucose transporter 4 (GLUT4), glycogen branching enzyme 1 (GBE1), and UDP-glucose pyrophosphorylase (UGP2).
View Article and Find Full Text PDFInt J Mol Sci
September 2022
Area di Ricerca Genetica e Malattie Rare, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
Seventeen out of 764 liver biopsies from transplanted (Tx) livers in children showed glycogen-ground glass (GGG) hepatocytic inclusions. The inclusions were not present in pre-Tx or in the explanted or donor's liver. Under the electron microscope (EM), the stored material within the cytosol appeared as non-membrane-bound aggregates of electron-lucent globoid or fibrillar granules, previously described as abnormally structured glycogen and identified as Polyglucosan bodies (PB).
View Article and Find Full Text PDFNat Struct Mol Biol
July 2022
Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
Glycogen synthase (GYS1) is the central enzyme in muscle glycogen biosynthesis. GYS1 activity is inhibited by phosphorylation of its amino (N) and carboxyl (C) termini, which is relieved by allosteric activation of glucose-6-phosphate (Glc6P). We present cryo-EM structures at 3.
View Article and Find Full Text PDFCell Rep
July 2022
Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA. Electronic address:
Glycogen is the primary energy reserve in mammals, and dysregulation of glycogen metabolism can result in glycogen storage diseases (GSDs). In muscle, glycogen synthesis is initiated by the enzymes glycogenin-1 (GYG1), which seeds the molecule by autoglucosylation, and glycogen synthase-1 (GYS1), which extends the glycogen chain. Although both enzymes are required for proper glycogen production, the nature of their interaction has been enigmatic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!