Dyslipidemia is frequent in patients with renal failure and in transplant recipient patients. This lead to a wide use of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) in patients with impaired renal function or in patients treated with cyclosporine as post-transplantation immunosuppressive therapy. As a result, it is crucial for those patients' physicians to be aware of how to handle these drugs when renal function is impaired and/or when cyclosporine is co-administered. Most statins have an extensive hepatic elimination and the renal route is usually a minor elimination pathway. However, pharmacokinetic alterations have been described for some of these drugs in patients with renal insufficiency. Cyclosporine is a widely used immunosuppresive therapy in solid organ transplant patients and drug-drug interactions are likely to occur when statins and cyclosporine are administered together. Those interactions may theoretically result in increased statins and/or cyclosporine serum levels with potential muscle and/or renal toxicity. As a result, caution is warranted if concurrent administration is performed. In this review, we synthesized the data from the literature on (1) the pharmacokinetics and dosage adjustment of atorvastatin, fluvastatin, pravastatin, rosuvastatin, and simvastatin in patients with renal failure and (2) the potential drug-drug interactions between these drugs and cyclosporine in transplant recipient patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijcard.2004.04.005 | DOI Listing |
JCI Insight
January 2025
Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.
View Article and Find Full Text PDFHigh Blood Press Cardiovasc Prev
January 2025
Department of Clinical Medicine and Surgery, ESH Excellence Center of Hypertension, "Federico II" University of Naples Medical School, Via S. Pansini, 5, 80131, Naples, Italy.
Introduction: A strong and well-known association exists between salt consumption, potassium intake, and cardiovascular diseases. MINISAL-SIIA results showed high salt and low potassium consumption in Italian hypertensive patients. In addition, a recent Italian survey showed that the degree of knowledge and behaviour about salt was directly interrelated, suggesting a key role of the educational approach.
View Article and Find Full Text PDFJ Nephrol
January 2025
Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy.
Background: In an Italian cohort of lupus podocytopathy patients, we aimed to characterize the presenting features, therapy, and outcomes, and explore differences between relapsing and non-relapsing patients.
Methods: We identified 29 patients with lupus podocytopathy from 1994 to 2023 in 11 Italian Nephrology/Rheumatology Units, and divided them into two groups: relapsing and non-relapsing. Given the limited sample size, a p-value ≤ 0.
J Nephrol
January 2025
Department of Nephrology, Beaumont Hospital, Dublin, Ireland.
Background: Autosomal dominant polycystic kidney disease (ADPKD) is caused primarily by pathogenic variants in the PKD1 and PKD2 genes. Although the type of ADPKD variant can influence disease severity, rare, hypomorphic PKD1 variants have also been reported to modify disease severity or cause biallelic ADPKD. This study examines whether rare, additional, potentially protein-altering, non-pathogenic PKD1 variants contribute to ADPKD phenotypic outcomes.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
June 2024
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!