A new approach to perform electrochemical immunoassay based on the utilization of encapsulated microcrystal was developed. The microcrystal labels create a "supernova effect" upon exposure to a desired releasing agent. The microcrystal cores dissolve, and large amounts of signal-generating molecules diffuse across the capsule wall into the outer environment. Layer-by-Layer (LbL) technology was employed for the encapsulation of electrochemical signal-generating microcrystals (ferrocene microcrystals). The encapsulated microcrystals were conjugated with antibody molecules through the adsorption process. The biofunctionalized microcrystals were utilized as a probe for immunoassays. The microcrystal-based label system provided a high-signal molecule to antibody (S/P) ratio of 10(4)-10(5). Microcrystal biolabels with different antibody surface coverage (1.60-5.05 mg m(-2)) were subjected to a solid-phase immunoassay for the detection of mouse immunoglobulin G (M-IgG) molecules. The microcrystal-based immunoassay for the detection of M-IgG performed with microcrystals having antibody surface coverage of 5.05 mg m(-2) showed a sensitivity of 3.93 nA microg(-1) L(-1) with a detection limit of 2.82 microg L(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac048505lDOI Listing

Publication Analysis

Top Keywords

microcrystal biolabels
8
antibody surface
8
surface coverage
8
immunoassay detection
8
microcrystal
5
microcrystals
5
electrochemical
4
electrochemical bioassay
4
bioassay utilizing
4
utilizing encapsulated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!