The expression of six imprinted genes (Dlk1, Gt12, Igf2r, Kcnq1, Nnat, and Peg1) was examined in brains of 21 mice derived from N2 x N2 intercrosses between C57BL/6 and MOLF/Ei strains. Imprinting of Igf2r, Kcnq1, Gt12, and Dlk1 varied among individuals. As three of these genes are implicated in cell-cell signaling or cell-environment interactions, variation in their imprinting may influence a wide range of biological processes from cell differentiation to behavior. To elucidate the mechanisms underlying the interindividual imprinting variation in the brain, we focused our effort on the paternally expressed gene Dlk1. We investigated expression of Dlk1 in the brains of animals from N9 and N10 backcrosses and found that reactivation of the normally silent maternal Dlk1 allele in the N9 and N10 mice occurred less often than in N2 x N2 animals. Our data suggest that trans-acting genetic factors of MOLF/Ei origin facilitate the reactivation of the normally silent maternal allele of Dlk1. We mapped one of these factors to the proximal part of Chr 7. The results of bisulfite sequencing methylation analysis show that reactivation of the maternal allele was also associated with hypermethylation of the intragenic differentially methylated region (IG DMR), which is the imprinting control region for the Dlk1-Gt12 domain. Thus, the imprinting status of Dlk1 in the brain depends upon trans-acting genetic influences and correlates with the methylation status of a specific subregion of the IG DMR.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-004-2434-9DOI Listing

Publication Analysis

Top Keywords

dlk1
8
dlk1 brain
8
igf2r kcnq1
8
reactivation silent
8
silent maternal
8
trans-acting genetic
8
maternal allele
8
imprinting
6
increased plasticity
4
plasticity genomic
4

Similar Publications

The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.

View Article and Find Full Text PDF

Genetics and Epigenetics of Human Pubertal Timing: The Contribution of Genes Associated With Central Precocious Puberty.

J Endocr Soc

January 2025

Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.

Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.

View Article and Find Full Text PDF

CBA-1205 is a novel humanized antibody targeting delta-like 1 homolog (DLK1) that enhances antibody-dependent cellular cytotoxicity activity. DLK1 overexpression has been reported in various cancer types, such as hepatocellular carcinoma and neuroblastoma. CBA-1205 demonstrates potent antitumor activity in multiple tumor models, making it a potential treatment option for DLK1-expressing cancers.

View Article and Find Full Text PDF

Delta-like 1 homolog (DLK1), a non-canonical Notch ligand, is highly expressed in various malignant tumors, especially in hepatocellular carcinoma (HCC). CBA-1205 is an afucosylated humanized antibody against DLK1 with enhanced antibody-dependent cellular cytotoxicity (ADCC). The binding characteristics of CBA-1205 were analyzed by enzyme-linked immunosorbent assay and fluorescence-activated cell sorting assay.

View Article and Find Full Text PDF

Diversity in Notch ligand-receptor signaling interactions.

Elife

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.

The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!