A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of paired, bonded NdFeB magnets in redox magnetohydrodynamics. | LitMetric

Use of paired, bonded NdFeB magnets in redox magnetohydrodynamics.

Anal Chem

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA.

Published: February 2005

Bonded neodymium-iron-boron (NdFeB) permanent magnets in a paired configuration were successfully used to control mass transport in redox-based, magnetohydrodynamics (MHD). Control of fluid flow based on magnetic fields has potential for use in portable lab-on-a-chip (LOAC) and analytical devices. Bonded magnets, composed of magnetic powder and organic binder materials, are less expensive and easier to fabricate and pattern than electromagnets and sintered permanent magnets, which have been previously used in MHD studies on electrochemical systems. The ability to pattern bonded magnets near and around the electrodes is expected to allow for better control over the magnetic field distribution and solution flow. Current was generated at an 800-microm-radius platinum disk electrode in a solution of 0.06 M nitrobenzene and 0.5 M tetra-n-butylammonium hexafluorophosphate in acetonitrile. Increases in limiting current in the presence of the magnetic field, which indicate enhancement in mass transport, for sintered (210+/-14%, N = 4, where B(r) = 1.23 T and magnetic field strength is 0.55 T) and bonded (94+/-8%, N = 4, where B(r) = 0.41 T and magnetic field strength is 0.20 T) magnets, were similar to those obtained using an electromagnet with the same magnetic flux densities. The magnetic field strength and not the magnet type is important in controlling fluid flow, which is encouraging for integration of bonded permanent magnets into LOAC devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac048849bDOI Listing

Publication Analysis

Top Keywords

magnetic field
20
permanent magnets
12
field strength
12
mass transport
8
fluid flow
8
magnetic
8
bonded magnets
8
magnets
7
bonded
5
field
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!