Electronic tags that archive or transmit stored data to satellites have advanced the mapping of habitats used by highly migratory fish in pelagic ecosystems. Here we report on the electronic tagging of 772 Atlantic bluefin tuna in the western Atlantic Ocean in an effort to identify population structure. Reporting electronic tags provided accurate location data that show the extensive migrations of individual fish (n = 330). Geoposition data delineate two populations, one using spawning grounds in the Gulf of Mexico and another from the Mediterranean Sea. Transatlantic movements of western-tagged bluefin tuna reveal site fidelity to known spawning areas in the Mediterranean Sea. Bluefin tuna that occupy western spawning grounds move to central and eastern Atlantic foraging grounds. Our results are consistent with two populations of bluefin tuna with distinct spawning areas that overlap on North Atlantic foraging grounds. Electronic tagging locations, when combined with US pelagic longline observer and logbook catch data, identify hot spots for spawning bluefin tuna in the northern slope waters of the Gulf of Mexico. Restrictions on the time and area where longlining occurs would reduce incidental catch mortalities on western spawning grounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature03463 | DOI Listing |
Sci Rep
January 2025
Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK.
Understanding the spatial ecology of commercially exploited species is vital for their conservation. Atlantic bluefin tuna (Thunnus thynnus, ABT) are increasingly observed in northeast Atlantic waters, yet knowledge of these individuals' spatial ecology remains limited. We investigate the horizontal and vertical habitat use of ABT (158 to 241 cm curved fork length; CFL) tracked from waters off the United Kingdom (UK) using pop-up satellite archival tags (n = 63).
View Article and Find Full Text PDFSci Rep
December 2024
Hopkins Marine Station of Stanford University, 120 Ocean View Blvd, Pacific Grove, CA, 93950, USA.
Foods
November 2024
Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
Tuna are economically important as food resources in food markets. However, because tuna is often processed into steaks or fillets, the meat can be difficult to identify through morphological features. For effective fishery management and to protect the rights of consumers, it is necessary to develop a molecular method to accurately identify the species used in tuna products.
View Article and Find Full Text PDFSci Rep
November 2024
Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK.
Mar Environ Res
November 2024
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Spain.
The Atlantic bluefin tuna (ABFT) population ranges throughout the Atlantic Ocean and Mediterranean Sea, and consists of multiple contingents that use diverse habitats and show different movement patterns over the life cycle. Based on body size, elemental and isotopic data of C and N in muscle and liver, we analysed eastern-stock ABFT by comparing mid-sized individuals caught by hook-and-line gears with larger individuals harvested from traps in the Strait of Gibraltar (SoG). Our results show that trophic-related chemical markers have potential for separating temporarily sympatric contingents throughout the ABFT population range, reflecting size-dependent spatial distribution and differential patterns of residency and migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!