Cigarettes that burn tobacco produce a complex mixture of chemicals, including mutagens and carcinogens. Cigarettes that primarily heat tobacco produce smoke with marked reductions in the amount of mutagens and carcinogens and demonstrate reduced mutagenicity and carcinogenicity in a battery of toxicological assays. Chemically induced oxidative stress, DNA damage, and inflammation may alter cell cycle regulation and are important biological events in the carcinogenic process. The objective of this study was to characterize and compare the effects of smoke condensates from cigarettes that burn tobacco and those that primarily heat tobacco on gene expression in NHBE cells. For this comparison, we used quantitative RT/PCR and further evaluated the effects on cell cycling using flow cytometry. Cigarette smoke condensates (CSCs) were prepared from Kentucky 1R4F cigarettes (a tobacco-burning product designed to represent the average full-flavor, low "tar" cigarette in the US market) and Eclipse (a cigarette that primarily heats tobacco) using FTC machine smoking conditions. The CSC from 1R4F cigarettes induced statistically significant increases in the mRNA levels of genes responsive to DNA damage (GADD45) and involved in cell cycle regulation (p21;WAF1/CIP1), compared to the CSC from Eclipse cigarettes. In addition, genes coding for cyclooxygenase-2 (COX-2) and interleukin 8 (IL-8), which are associated with oxidative stress and inflammation, respectively, were increased statistically significantly more by CSC from 1R4F than by that from Eclipse. Furthermore, a dose-dependent increase in IL-8 protein secretion into cell culture media was stimulated by 1R4F exposure, whereas minimal IL-8 protein was secreted after Eclipse treatment. The biological relevance of the differential effect on gene expression was reflected in differential cell cycle regulation, as cells exposed to 1R4F CSC exhibited more significant S phase and G2 phase accumulation than cells exposed to Eclipse CSC. These data indicate that the simplified smoke chemistry of the tobacco-heating Eclipse cigarette yields statistically significant reductions in the expression of key genes involved in DNA damage, oxidative stress, inflammatory response, and cell cycle regulation in normal human bronchial epithelial cells compared to a representative tobacco-burning cigarette.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfi179DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
cycle regulation
16
gene expression
12
oxidative stress
12
dna damage
12
normal human
8
human bronchial
8
bronchial epithelial
8
nhbe cells
8
cigarette smoke
8

Similar Publications

Effects of double data extraction on errors in evidence synthesis: a crossover, multicenter, investigator-blinded, randomized controlled trial.

Postgrad Med J

January 2025

Proof of Concept Center, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital, Second Military Medical University, Naval Medical University, No. 255, Yangpu District, Shanghai, 200433, China.

Objectives: The objective was to investigate the role of double extraction in reducing data errors in evidence synthesis for pharmaceutical and non-pharmaceutical interventions.

Design: Crossover randomized controlled trial (RCT).

Setting: University and hospital with teaching programs in evidence-based medicine.

View Article and Find Full Text PDF

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

The p53-MDM2 pathway plays a crucial role regulating tumor suppression and is a focal point of cancer research. This literature review delves into the complex interplay between the tumor suppressor protein p53 and its main regulator MDM2, highlighting their interaction and implications in cancer development and progression. The review compiles and summarizes the existing understanding of the biology and regulation of p53 and MDM2, emphasizing their roles in various cellular processes, including cell cycle regulation, DNA repair, apoptosis, and metabolism.

View Article and Find Full Text PDF

Genetic studies on the protist, provide a glimpse into the unexpectedly rich world of intracellular patterning that unfolds within the ciliate cell cortex. Ciliate pattern studies provide a useful counterpoint to animal models of pattern formation in that the unicellular model draws attention away from fields of cells (or nuclei) as the principal players in the metazoan pattern paradigm, focusing instead on fields of ciliated basal bodies serving as sources of positional information. In this study, we identify , a Polo kinase of , that serves as an important factor driving global, circumferential pattern.

View Article and Find Full Text PDF

Coordinated expression of replication-dependent (RD) histones genes occurs within the Histone Locus Body (HLB) during S phase, but the molecular steps in transcription that are cell cycle regulated are unknown. We report that RNA Pol II promotes HLB formation and is enriched in the HLB outside of S phase, including G1-arrested cells that do not transcribe RD histone genes. In contrast, the transcription elongation factor Spt6 is enriched in HLBs only during S phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!