AI Article Synopsis

Article Abstract

We report nine novel DNA alterations in the RET proto-oncogene in 12 unrelated cases identified by DNA sequencing of exons 10 and 11 of the gene. The novel variants K666E, IVS9-11G-->A, D631V in cis with H665Q, D631E (with C634Y), E623K (in trans with C618S), 616delGAG (in trans with C609Y), Y606C, C630R, and R635-T636insELCR;T636P were detected in patients with various clinical presentations ranging from thyroid goiter, medullary thyroid carcinoma, and pheochromocytoma to classic multiple endocrine neoplasia type 2A. When novel DNA alterations are found, extended family studies can be helpful in determining the clinical significance of such findings. Segregation within families suggests that K666E and T636insELCR;T636P are likely to be disease-causing mutations. However, the mechanism by which they affect the normal activity of the RET receptor is unclear. Absence of segregation with disease was observed for E623K and 616delGAG. For the remainder of the DNA alterations, family studies were not possible, and the clinical significance of these novel variants needs further assessment. Additional case reports, animal models, and/or functional studies are needed to determine the clinical significance of these newly identified variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867532PMC
http://dx.doi.org/10.1016/S1525-1578(10)60556-9DOI Listing

Publication Analysis

Top Keywords

dna alterations
12
clinical significance
12
ret proto-oncogene
8
unrelated cases
8
novel dna
8
novel variants
8
family studies
8
novel
5
novel germline
4
germline gene
4

Similar Publications

Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

SMARCA4 Deficiency in Lung Cancer: From Signaling Pathway to Potential Therapeutic Targets.

Genes Chromosomes Cancer

January 2025

Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China.

SMARCA4-deficient lung cancer, including thoracic SMARCA4-deficient undifferentiated tumors and SMARCA4-deficient nonsmall-cell lung carcinomas, is a rare and aggressive disease characterized by rapid progression and poor prognosis. This cancer was identified as a distinct entity with specific morphologic and molecular features in the 2021 WHO Classification of Thoracic Tumors. Molecular alterations in SMARCA4 are specific to this type of lung cancer.

View Article and Find Full Text PDF

The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.

Regen Ther

March 2025

Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.

The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.

View Article and Find Full Text PDF

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!