A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isolation and characterization of a rice mutant hypersensitive to Al. | LitMetric

Isolation and characterization of a rice mutant hypersensitive to Al.

Plant Cell Physiol

Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan.

Published: July 2005

Rice (Oryza sativa L.) is a highly Al-resistant species among small grain crops, but the mechanism responsible for the high Al resistance has not been elucidated. In this study, rice mutants sensitive to Al were isolated from M(3) lines derived from an Al-resistant cultivar, Koshihikari, irradiated with gamma-rays. Relative root elongation was used as a parameter for evaluating Al resistance. After initial screening plus two rounds of confirmatory testing, a mutant (als1) was isolated from a total of 560 lines. This mutant showed a phenotype similar to the wild-type plant in the absence of Al. However, in the presence of 10 microM Al, root elongation was inhibited 70% in the mutant, but only 8% in the wild-type plant. The mutant also showed poorer root growth in acid soil. The Al content of root apices (0-1 cm) was much lower in the wild-type plant. The sensitivity to other metals including Cd and La did not differ between the mutant and the wild-type plants. A small amount of citrate was secreted from the roots of the mutant in response to Al stress, but there was no difference from that secreted by the wild-type plant. Genetic analysis of F(2) populations between als1 and wild-type plants showed that the Al-resistant seedlings and Al-sensitive seedlings segregated at a 3 : 1 ratio, indicating that the high sensitivity to Al in als1 is controlled by a single recessive gene. The gene was mapped to the long arm of chromosome 6, flanked by InDel markers MaOs0619 and MaOs0615.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pci116DOI Listing

Publication Analysis

Top Keywords

wild-type plant
16
root elongation
8
mutant wild-type
8
wild-type plants
8
mutant
7
wild-type
6
isolation characterization
4
characterization rice
4
rice mutant
4
mutant hypersensitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!