Comparison of the effects of anticonvulsant drugs with diverse mechanisms of action in the formalin test in rats.

Neuropharmacology

Neuroscience Division, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.

Published: June 2005

The purpose of the present studies was to compare anticonvulsant drugs with diverse mechanisms of action in a persistent pain model, the formalin test. In addition, the anticonvulsant effects of the compounds were determined in the threshold electroshock tonic seizure test and the 6-Hz limbic seizure test. The effects of the compounds were also determined on locomotor activity. Carbamazepine, oxcarbazepine, lamotrigine, gabapentin and ethosuximide all produced statistically significant analgesic effects in the formalin test whereas phenytoin, topiramate, zonisamide, phenobarbital, tiagabine, valproate and levetiracetam did not. All compounds were anticonvulsant. In addition, morphine and phenobarbital increased locomotor activity while ethosuximide had no effect and all other compounds decreased locomotor activity. For those compounds that were analgesic, the doses required to produce analgesia were larger in magnitude than the anticonvulsant ED50 values in the threshold electroshock and 6-Hz tests, as well as larger than doses that altered locomotor activity. The present results demonstrate that the anticonvulsant and analgesic effects of clinically used antiepileptic drugs do not necessarily correlate and therefore suggest that the anticonvulsant and analgesic efficacy of these drugs may be due to different pharmacologic mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2005.01.013DOI Listing

Publication Analysis

Top Keywords

locomotor activity
16
formalin test
12
anticonvulsant drugs
8
drugs diverse
8
diverse mechanisms
8
mechanisms action
8
effects compounds
8
compounds determined
8
threshold electroshock
8
seizure test
8

Similar Publications

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Objective: To identify the factors associated with home discharge in individuals with cervical spinal cord injuries (cSCI) according to age group.

Design: Cross-sectional study.

Setting: Hospital or rehabilitation centers specializing in spinal cord injuries in Japan.

View Article and Find Full Text PDF

The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process.

View Article and Find Full Text PDF

An athlete's performance and musculoskeletal health hinges on their ability to adapt their movements to varying environmental constraints. However, research has yet to offer a thorough understanding of whether coordination variability is altered in response to different synthetic and natural turf surfaces. The purpose of this study was to investigate lower extremity coordination variability during hopping and running on four turf surfaces-three synthetic and one natural.

View Article and Find Full Text PDF

Conditioned suppression is a useful paradigm for measuring learned avoidance. In most conditioned suppression studies, forward conditioning is used where a cue predicts an aversive stimulus. However, backward conditioning, in which an aversive stimulus predicts a cue, provides unique insights into learned avoidance due to its influence on both conditioned excitation and inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!